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A self-contained elastic theory is derived which accounts both for mechanical yield and shear-
induced volume dilatancy. Its two essential ingredients are thermodynamic instability and the
dependence of the elastic moduli on compression.
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Coulomb condition partially contradicts conventional that fit the above description. Consider two solid spheres
Stable sandpiles show clear elastic behavior, though
conventional elasticity theory cannot be appropriate, as
sandpiles also possess the steepest slope. The associated
angle, the Coulomb angle ’, has a typical value of around
30� for dry sand. So granular materials may be taken to
interpolate between fluid (no elasticity, ’ � 0�) and solid
(conventional elasticity, ’ � 90�). This is usually under-
stood in terms of the solid friction law: Subject to grav-
itational pull, a sand grain resting on a slope of angle �
experiences the force N � �G cos� normal to the surface,
and S � �G sin� along it, with S=N � tan� (� is the mass
density and G the gravitational constant). Since static
friction will only sustain a maximal S=N, there is a
maximal �, which one may identify with the Coulomb
angle ’, or S=N � tan’. Now, requiring this to hold both
along any the plane and everywhere in the bulk, one may
reinterpret S andN as components of the stress tensor�ij,
respectively, tangential and normal to the given plane.
Then the inequality may, with �1 and �3 as the largest
and smallest eigenvalues of �ij, be written as

j��1 � �3�=��1 	 �3�j � sin’: (1)

This is the ‘‘Coulomb yield condition’’ or ‘‘Coulomb law
of internal friction,’’ a textbook formula of soil mechan-
ics [1], employed to impose mechanical yield upon con-
ventional elasticity. Although this formula captures
essential granular physics, it possesses a number of defi-
ciencies. First, the Coulomb condition preempts what
should have been the result of a proper theory: Ideally,
one would like to start from a continuum theory, calculate
the spatial dependence of the stress with appropriate
boundary conditions, and arrive —with some substanti-
ated understanding—at the fact that there is a maximal
shear stress in sand, above which the system is mechani-
cally unstable. This includes especially an expression for
the Coulomb angle ’. The Coulomb law postulates the
last bit and employs it backward.

Second, the Coulomb condition takes for granted that
mechanical yield is determined by a unique ’, indepen-
dent of geometry. Third, it is not obvious that granular
materials behave as conventional solids up to the
yield point, without any precursor behavior. Fourth, the
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elasticity, and our understanding is rendered regrettably
precarious. Last, but not least, Reynolds dilatancy [2]—
the volume expansion concurring with shear motion in
granular materials—should be an integral part of me-
chanical yield, yet it is usually ignored by the Coulomb
law [3]. Imagine a pile of stacked steel balls, and envisage
how a shearing displacement lifts the balls from their
close-packed positions and gives rise to volume expan-
sion—which eventually leads to yield. In experiments [4]
and simulations [5] this is what has been observed.

Although the Coulomb condition appears unique to
granular systems, its sole purpose is to account for me-
chanical yield, or the lack of elastic configurations for
certain values of stress and strain. Yield is a widespread
phenomenon in many solids at high stresses, which are
well accounted for by linear elasticity at lower values of
stress.‘‘Low, high’’ are of course relative concepts, and the
noteworthy point is that being characterized by a qua-
dratic elastic free energy and a linear stress,

fel �
1
2Kbu

2
nn 	 Kau

0
k‘u

0
k‘; (2)

�ij � �Kbunn�ij � 2Kau
0
ij; (3)

linear elastic theory cannot possibly account for yield, as
it provides stable elastic solutions for arbitrary strains and
stresses, however high. (unn is the trace of the strain
tensor uij, u0kl 
 ukl � unn�kl=3 is its traceless part, and
Kb;Ka are the constant compressional and shear moduli.)
Yet contrary to prevalent perception, this is not a general
feature of elasticity: Adding nonlinear terms to Eqs. (2)
and (3) may well render given elastic solutions unstable
for some variable range. And it appears obvious that
elastic instabilities, or more generally the lack of elastic
solutions, are to be identified with yield, the lack of elastic
configurations. Doing so embraces yield as the generic
phenomenon that it is, and does away with extraneous
inputs such as the Coulomb condition. Note also that yield
therefore marks the end of the range of validity for
elasticity. Only a more comprehensive theory including
dissipative terms is able to describe what then happens,
typically plastic flows.

In granular materials, one need not look far for terms
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in contact [6] to find U� h5=2, f� h3=2, where U is the
elastic energy, f the applied force, and h the relative
change in height. The latter relation is not linear, because
the area of contact between the two spheres and the
amount of compressed mass increase with h. Assuming
one can scale up this two-body result to granular mate-
rials, in usual parlance, that they possess ‘‘Hertz con-
tacts,’’ we identify U; f; h, respectively, with fel; �nn; unn
of Eqs. (2) and (3), and conclude Kb � u

1=2
nn � �1=3

nn is no
longer constant. Realistically, with more than two grains
in contact, Kb will still depend on �nn and vanish with it,
so one may more generally take Kb � �

�
nn. And since the

physics of increasing contact area is similar for shear,
also take Ka � �

�
nn. Evesque and de Gennes employed

these elastic moduli in the stress of Eq. (3) to successfully
render the pressure saturating in silos [7].

Aiming to generalize this quasielastic theory and
embed it into a consistent thermodynamic framework,
we made the following observation: With Kb;Ka � uann
and the free energy fel retaining its form of Eq. (2), the
stress �ij—given by general considerations essentially as
@fel=@uij—is necessarily modified; Eq. (3) is clearly
correct only if Ka;Kb are constant. Our serendipitous
finding reported below is that the additional terms of
�ij suffice to account for mechanical yield and volume
dilatancy by rendering elastic solutions unstable in a
range of parameters appropriate for granular materials.
(Assuming as above that it is the stress which retains its
form, no fel exists such that �ij � @fel=@uij holds, be-
cause Maxwell relations are violated; e.g., @�12=@u22 �

@�22=@u12 � 0.)
Basic to our approach is the assumption that a finite

elastic region exists. This is universally accepted in soil
mechanics, eloquently supported by de Gennes [7], and in
fact corroborated by the stability of sandpiles. There are
of course well argued reservations, such as those derived
from force arches, or from the distinction between plastic
versus elastic contacts—introduced partly due to the
same desire to understand yield [8]. However, they are
usually based on an ‘‘intergranular’’ or microscopic point
of view, and the connection to the elasticity of macro-
scopic, continuous media is less than clear [9]. A different
argument is the possible lack of a unique displacement
field Ui. In our opinion, elasticity is, at its core, a robust
theory: In spite of crystal defects, frequently renderingUi
ill defined, elasticity remains valid in solids, accounting
for its capability to sustain shear stresses—as long as the
defects are stationary. By merely standing, sandpiles
demonstrate the same capacity, and there is no reason
why a carefully constructed elastic theory should not be
able to account for all its static, macroscopic behavior as
well. After all, whether a proposed theory does exactly
this should be its ultimate test.

In the following, a self-contained elastic theory ca-
pable of accounting for mechanical yield and volume
dilatancy is developed. First, we choose an equilibrium
state of arbitrary (thermodynamic) temperature T and
144301-2
packing density �c, with no external forces, especially
gravitation, but with the atmospheric pressure present
[10]. This virtual state (in spite of its marginalized stabil-
ity and individually compressed grains) is taken as our
system of reference, with a vanishing displacement field
Ui. The associated free energy density is f1�=m, where
f1�T� is the free energy, and m the mass, per grain.
Turning on the gravitation and applying external forces
will further strain the granular material and lead to
density change. If the force is small and applied slowly
enough, this change is elastic,

� 
 1� �c=� � �unn: (4)

As gravitation and normal stress cram the grains, they
lead to finite contact areas between them, and give rise to
finite elastic moduli. The free energy density becomes

f � �f1=m��	 1
2Kbu

2
nn 	 Kau

0
k‘u

0
k‘ 	 �Gz; (5)

Kb � ~KKb�b; Ka � ~KKa�a; (6)

with ~KKa; ~KKb > 0 for � � 0, ~KKb; ~KKa � 0 for � < 0. (The
particles lose contact with one another for � < 0.) Linear
elasticity corresponds to a; b � 0, while Hertz contacts
imply a; b � 1=2. However, we did not find a watertight
general reason requiring a � b, as assumed in the qua-
sielastic theory [7]. We believe this is a question of clarity
versus accuracy: Experiments are better accounted for if
b is taken slightly larger than a (see below). Yet a is the
rather more important exponent, which alone already
gives rise to mechanical yield and volume dilatancy. So
b need not be treated with the same care, and one may set
b � a to gain great simplifications in the expressions,
mainly because the Poisson ratio

" 
 �3Kb � 2Ka�=�6Kb 	 2Ka� (7)

then lacks critical density dependence. Finally, Eq. (6)
should be taken in the spirit of an expansion that holds
only close to �c, or for �� 1.

Given Eqs. (5) and (6), and employing the Eulerian
notation, 2uij � riUj 	rjUi �riUkrjUk, the stress is
determined by energy and momentum conservation (cf.
[11]) to be �ij � ��#� f��ij ��ij 	�ikukj 	�jkuki,
where �ij 
 �@f=@uij��;T and # 
 �@f=@��u;T . Keeping
only the dominant of the nonlinear terms, we have

�ij �� Kbunn�ij � 2Kau
0
ij

	 ��1�12bKbu
2
nn 	 aKau

0
‘ku

0
‘k��ij: (8)

Setting a; b � 0, only the first line, or the expression of
linear elasticity, remains. The next line comes either
from deriving Ka;Kb with respect to � � �c�1� ��,
leading to a contribution in the chemical potential #, or
equivalently, with respect to unn � ��, giving rise to
additional terms in �ij. Although a � b � 0 in the qua-
sielastic theory [7], neither does its stress contain the
second line. As will be shown in a future work, this is
144301-2
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qualitatively alright for silos, because yield is never a
problem here.

To obtain a feeling for the implications of Eq. (8),
consider the pressure P 
 �kk=3, as a function of the
compression � and the shear us 


��������������
u0‘ku

0
‘k

q
,

P � �1	 b=2� ~KKb�1	b 	 a ~KKau2s=�1�a: (9)

� is plotted versus P for given us and realistic values of
a; b, in the left-hand side of Fig. 1. The solid part of the
lines is the stable, physical region, with a positive com-
pressibility; the dashed lines, showing P! 1 for �! 0,
are the unstable, unphysical region. The reason for this
can be understood from the right-hand side of Fig. 1, a
plot of � versus us for given P. Starting at the top, with
finite compression and no shear, � � 4� 10�4, us � 0,
we see how the solid lines decrease, or how volume
dilates, for increasing shear. (Conventional, linear elas-
ticity yields a straight horizontal line, stopping at the
value asserted by the Coulomb yield condition.) Shear
values to the right of the parabolalike curves obviously do
not have elastic solutions, though as mentioned plastic
flow solutions of course must exist.

Thermodynamic stability, however, is lost even before
the vanishing of the elastic solutions, at the points given
by the arrows, where the solid lines turn into dashed
lines. This is because f of Eq. (5) is convex only for
certain values of � and us: With f � 1

2
~KKb�

b	2 	
~KKa�

au2s 	 � � � , thermodynamic stability requires
�@2f=@�2��@2f=@u2s� � �@2f=@� @us�

2, or

u2s=�
2 � �2	 b��1	 b�Kb=�2a�1	 a�Ka�: (10)

The dashed lines of both figures represent parameters that
do not satisfy this condition. Note that if the medium is
not at all compressed, no finite shear is stable.

For further comparison of this theory to the Coulomb
yield condition (1), we shall in the following consider
three typical experimental setups (see upper inset of
Fig. 2). (i) Simple shear test: An infinite layer of sand
subject to a normal and a shear force density, N and S
(ii) Axisymmetric triaxial test: A cylindrical sample of
sand subject to a hydrostatic pressure p and a deviatory
FIG. 1. Compression � versus pressure P (left) and shear us
(right). Stability is maintained only where the lines are solid.
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normal stress q. (iii) Sand on a slope: An infinite layer of
sand on a rough, inclined plane with the angle �. The
implications of Eq. (1) for these experiments are, respec-
tively [1],

S=N � tan’1; q=�2p	 q� � sin’2; � � ’1;

(11)

with ’1 � ’2 denoting the Coulomb angle. Using the
above granular elastic theory, setting for simplicity a �
b, the respective results may also be dressed as the same
inequalities, though ’1; ’2 are now explicitly given,

tan’1 �

��������������������������������������������������������������
3�1� 2"��5a"	 2"� a	 2�

p
������
2a

p
�a"� 2"	 a	 4�

; (12)

sin’2 �
3

���������������
1� 2"

p

2
������������������������������������
2a�2	 a��1	 "�

p
	

���������������
1� 2"

p : (13)

These expressions are easily derived. For the simple shear
test, the symmetry of the geometry and the force balance
rk�ik � 0 (neglecting gravity) prescribe constant strain,
with the displacement given as Ux;Uy � y, Uz � 0.
Inserting the nonvanishing components of the strain,
uxy and uyy � ��, into Eq. (8), we obtain

�yy � �1	 b
2�Kb�	

4
3�1	

a
2�Ka�	 2aKau2xy=�; (14)

�xy � �2Kauxy; �xx � �yy � 2Ka�: (15)

The boundary conditions impose �yy � N, �xy � S.
Solving � and uxy as functions of N and S, we find that
no solution exists if N=S exceeds a maximal value. In
addition, � and uxy must satisfy Eq. (10), which for the
present case is the more stringent one, leading to Eq. (12).
Note that because Eq. (14) is similar to Eq. (9) (they
are structurally identical for a � b), it also displays
dilatancy.

The strain is again constant for the axisymmetric
triaxial test. With the displacement vector given as Ux �
x, Uy � y, Uz � z, the strain is uxx � uyy � ���	
FIG. 2. Plots of ’1 (solid lines) and ’2 � ’1 (dashed lines) as
functions of a for " � 0:2; 0:3; 0:4 (denoted as 1, 2, 3).
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�H=H0�=2, uzz � �H=H0, and uij � 0 for i � j. (H0 is
the height for p � q � 0, and �H its change.) Inserting
these into Eq. (8) yields the stress tensor,

�xx � �yy �
a
6q

2=�Ka�� �
1
3q	 Kb�1	

b
2��;

�zz � �yy � ��	 3�H=H0�Ka: (16)

The boundary conditions are �xx � �yy � p, �zz � p	
q, �ij � 0 for i � j. Again, � and �H do not have
solutions if q=�2p	 q� exceeds the value given by
Eq. (13). [Equation (10) yields exactly the same constraint
here.]

Because of high external forces, the actual deforma-
tions in both above experiments tend to contain consid-
erable plastic contributions, invalidating a direct
comparison with the present theory. This is not the case
for the third experiment, sand on a slope, as its deforma-
tion is due to the comparatively small gravity. The me-
dium is uniform along the x and z directions (see inset of
Fig. 2), so the displacement is of the form Ux � Ux�y�,
Uy � Uy�y�, Uz � 0. The stress tensor is then given by
Eq. (8) and by integrating d�yy=dy � ��G cos�,
d�xy=dy � �G sin� under the constraint that the stress
vanishes at the free surface (y � H),

�xx � �1	 b
2�Kb�	

2
3�a� 1�Ka�	 2aKau2xy=�;

�xy � �2#uxy � �GM�y� sin�;

�yy � �xx 	 2Ka� � GM�y� cos�:

(17)

M�y� 

R
H
y ��y

0�dy0 denotes mass per unit area between y
and the free surface H; the total mass M�y � 0� is taken
as a constant that does not vary with �, so both � and H
depend on �. As in the simple shear test, the stability
condition, Eq. (10), is the more stringent one confining
the value of sin� and leads to Eqs. (12).

Finally, we consider what these results imply for the
parameters of the above granular elastic theory, espe-
cially the powers a, b and the Poisson ratio ". In Fig. 2,
’1 and ’2 � ’1 are plotted as functions of a with differ-
ent values of ", rendered in solid and dashed lines,
respectively. The angle ’1 varies between 15� and 35�,
with j’2 � ’1j=’1 & 5% in the parameter regime 0:2<
a< 1 and 0:35< "< 0:4. Insisting on ’2 � ’1 � 30�

for Coulomb media, we find a � 0:27 and " � 0:36. (The
fact that j’2 � ’1j diverges for small a indicates that
linear elasticity, a! 0, is incompatible with a unique
angle of friction.) Because ’1 is the maximum angle for
inclined planes with a layer of sand at rest, we may
identify ’1 with Bangold’s maximum angle of stability.
Experimentally, this angle is found to vary from 30�

(spherical grains) to 60�–70� (angular and rough grains)
[12]. According to Fig. 2, this implies an a between 0
and 0.4.

Because we assumed b � a, b also varies between 0
and 0.4 [cf. Eqs. (6) and (9)], we have� varying between 0
and 0.28—smaller than the 1

3 of the Hertz contact [6].
This is an indication that a � b oversimplifies. Repeating
144301-4
the above calculation allowing a � b, we find’1 � ’2 �
30� by taking a � 0:4, b � 0:5 (i.e., � � 1

3 ), and
~KKa= ~KKb � 0:36.

At higher pressures (from 700 to 7000 kg=m2),� � 0:5
(or b � 1) was measured and referred to as the P1=2

dependence [13]. Various microscopic reasons were pro-
posed for this deviation from the Hertz law [14,15].
Within the present framework, this is easily accounted
for by the packing dependence of b��c�, a feature that we
shall study in future works.

It is important to realize that the Poisson ratio " as
given in Eq. (7) is, in granular materials, not the same as
that given by

"tri � �

�
duxx=dq
duzz=dq

�
�

1

2

b2 	 3b	 �b2 	 3b	 6�"

b2 	 3b	 3	 b�b	 3�"
(18)

(at q! 0), e.g., measured in triaxial experiments. [The
second expression is obtained by employing Eq. (16).]
Taking b � 0:5, a � 0:4, ~KKa= ~KKb � 0:36 as above, and
� � 10�5, we obtain "tri � 0:25, well comparable to the
measured value of around 0.17 to 0.25 [16]. (Enforcing
a � b again leads to discrepancy: Taking a � b � 0:27
and "=0.36 as given above, we have "tri � 0:4.)
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