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We report the first experimental observation of discrete vector solitons in AlGaAs nonlinear
waveguide arrays. These self-trapped states are possible through the coexistence of two orthogonally
polarized fields and are stable in spite of the presence of four-wave mixing effects. We demonstrate that
at sufficiently high power levels the two polarizations lock into a highly localized vector discrete
soliton that would have been otherwise impossible in the absence of either one of these two components.
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One-dimensional nonlinear lattices are known to ex-
hibit a host of unique properties that have no analog
whatsoever in homogeneous systems. One of the most
intriguing outcomes of nonlinearity in such a periodic
environment is perhaps the existence of self-localized
entities — better known as discrete solitons (DSs) [1-4].
In nonlinear optics, DSs find their most straightforward
manifestation in coupled nonlinear waveguide arrays as
first predicted in Ref. [2]. In the linear regime, light in
these periodic waveguide lattices propagates from site to
site due to evanescent field coupling among adjacent
waveguides [5]. It is interesting to note that this discrete
diffraction (or tunneling) mechanism has much in com-
mon with electron transport processes in semiconductor
crystals when described within the so-called tight-
binding approximation [6]. Therefore, as a direct result
of the array discreteness, linear optical wave propagation
is associated with allowed and forbidden bands within the
Brillouin zone [7]. At higher power levels, however, the
nonlinear array is perturbed and this local defect allows a
DS to form. Such DSs have been experimentally observed
in arrays with Kerr [8], quadratic [9], and photorefractive
nonlinearities [10] in both one and two transverse dimen-
sions. Thus far several classes of DSs, some entirely
unique to discrete systems, have been predicted. These
include both bright and dark in-phase and staggered DSs
in self-focusing and defocusing arrays [2,11] and higher-
order Floquet-Bloch solitons [12].

Vector discrete solitons make up another impor-
tant family of such self-localized states [7,13]. A vector
soliton exists through the mutual trapping of two or
more nonlinearly interacting wave packets, and thus
this composite structure is possible only provided that
all its components are simultaneously present [14-17].
Composite DSs have also been predicted in optical wave-
guide arrays with either Kerr or quadratic nonlinearity
[13,18]. In quadratically nonlinear waveguide arrays,
stable domain walls and quasirectangular solitons have
been suggested, whereas in Kerr arrays with Manakov-
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like interactions, bright-bright and dark-antidark vector
soliton pairs were theoretically identified in both 1D and
2D systems [7,19]. Discrete vector interactions in two-
dimensional array networks have also shown consider-
able promise toward implementing all-optical switching,
routing, and logic functions [20]. However, until now, no
experimental observations of vector discrete solitons have
ever been reported in any physical system.

In this Letter, we report the first experimental obser-
vation of vector discrete solitons consisting of two coher-
ently coupled orthogonal polarizations in Kerr nonlinear
waveguide arrays. We find that these vector solitons can
propagate in a stable fashion, in spite of four-wave mix-
ing effects, provided that the two appropriate polariza-
tion components (TE/TM) are in-phase at the input of
the array. Our experiment demonstrates self-localization
when both polarization components are present whereas
in the absence of either the TE or TM polarization dis-
crete diffraction occurs. The stability of these vector dis-
crete solitons under the action of four-wave mixing power
exchange was also investigated by varying the relative
input phase between the two polarizations. Our analysis is
in good agreement with the experimental results.

Our experiments were carried out in a 13.9 mm long
AlGaAs waveguide array similar to that previously used
to observe scalar solitons [8]. The wavelength used to
excite this Kerr nonlinear array is A, = 1.55 um, i.e., be-
low half the semiconductor’s band gap so as to minimize
nonlinear absorption effects. The Kerr coefficient is taken
to be A, = 1.5 X 10713 cm?/W, and at this wavelength,
the effective cross-sectional area of each waveguide is
Ay = 4.7 um?. The coupling constant among adjacent
waveguide sites is k = 0.336 mm ™!, and the linear bi-
refringence in every channel is estimated to be n, — n, =
1.8 X 107*. In our system, the slow axis (n,) is associated
with the TE polarization.

From coupled mode theory, the wave dynamics of the
two orthogonally polarized fields can be described by the
following pair of discrete evolution equations:
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In the above equations, a,, and b, are the normalized
slowly varying field envelopes of the TE and TM
polarized waves and are related to the actual fields via
(an, b,)=[ny/(n, —n,)]/*(E,,, E,,). The Kerr coefficient
used in Egs. (1) is given by n, = A,n/27,, where 7, is the
vacuum intrinsic impedance and for this material the
refractive index is about n = 3.3. The coupling coefficient
v is normalized with respect to the birefringence, y =
2«/[ko(n, — n,)], and in modeling this system, we have
assumed that it is the same for both polarizations.
Equation (1) implicitly describes self-phase, cross-phase
modulation, and four-wave mixing processes. The values
of the A, B coefficients, respectively, associated with
cross-phase modulation and four-wave mixing effects
(as obtained from the AlGaAs y®tensor), are approxi-
mately equal to A= 1 and B = 1/2. The normalized
distance ¢ is related to the actual z coordinate via { =
koz(n, — n,)/2, and the birefringence of the array is
reflected in the second terms of Eqgs. (1).

To gain insight into the dynamics of vector discrete
solitons, it is useful to first theoretically analyze the array
system using Eqs. (1). To identify the vector DSs of this
system, we assume that the soliton solutions have the
form (a,, b,) = (X,, Y,) exp(iq{). The nonlinear differ-
ence equations that result after the substitution of these
forms into Egs. (1) are then solved using Newtonian
relaxation techniques. Here, we concentrate on the most
primitive vector DS classes that are directly relevant to
our experimental observations. After obtaining the vector
DS solutions of Egs. (1), the corresponding family is
mapped on a P — A diagram, where P = (n, — n,) X
(Aetr/R2) Y (la,? + |b,1?) is the total power in the wave-
guide array as conveyed by both polarizations and A =
(kog/2)(n, — n,) is the soliton “‘eigenvalue.” The stabil-
ity properties of these solutions are then investigated via
linear stability analysis.

We begin by separately exploring the one-component
TE and TM discrete soliton branches, the P — A dia-
grams of which are shown in Fig. 1. A close inspection
of the eigenvalues ({}) associated with soliton perturba-
tions reveals that, in its range of existence, the TE family
in this AlGaAs array is stable up to a critical power
(238 W) at which it bifurcates into two branches as can
be seen in Fig. 1. Beyond this bifurcation point, the upper
branch (dotted line) is the now unstable continuation of
the scalar TE soliton family, whereas the lower branch
(solid curve) corresponds to a new family of stable solu-
tions involving in-phase TE and TM components, i.e., a
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linearly polarized vector DS. A somewhat similar sce-
nario occurs in the P — A diagram of the TM polarized
DSs. In this case, however, the entire TM family (in its
range of existence) is always unstable. Note again that
after a certain critical power (in this case 257 W) a bifur-
cation occurs and a new branch corresponding to ellipti-
cally polarized vector DSs starts to emerge. This time,
however, this elliptically polarized class, where the a,, b,
components are 77/2 out of phase with respect to each
other, is unstable. Even though this picture is reminiscent
of similar behavior occurring in birefringent y'® con-
tinuous systems [21], there are certain important aspects
that are characteristic of discreteness. For example, when
propagating in a single waveguide in isolation, both the
TE and TM polarizations become unstable [22] for
la,|? |b,|* = 4 (or 225 W in this case) because of polar-
ization instabilities. Yet, the linearly polarized vector DSs
in the array are stable because of interchannel coupling
even at high power levels where they are very highly
localized.

It is important to note that in the regime where vec-
tor DSs are highly confined, their discrete field am-
plitudes can be well approximated analytically by the
following expressions: X, = Apexp(—v|n|) and Y, =
By exp(—uln|) where v = cosh™'[(¢ — 1)/2y] and u =
cosh™![(g + 1)/2y]. The soliton amplitudes are obtained
from

_ 2v[(A = B) sinh(u) — sinh(v)]
B (A= B)?—1

A} , (2a)
_ 2y[(A = B)sinh(») — sinh(u)]
(AxB)? -1

where the * arrangement corresponds, respectively, to
the linearly and elliptically polarized vector DS families.
The above expressions provide an excellent approxi-
mation for the highly confined vector DSs observed in
our study.

Figures 2(a) and 2(b), respectively, depict stable propa-
gation of the TE and TM components associated with a
linearly polarized highly localized vector DS in an

B} , (2b)
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FIG. 1 (color online). P — A diagrams for the linearly polar-
ized (solid line) and elliptically polarized (dashed line) vector
discrete solitons as well as for the scalar TE (dotted line) and
TM (dot-dashed line) solitons.
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FIG. 2 (color online). Stable propagation of the (a) TE com-
ponent and (b) TM component of a linearly polarized vector
discrete soliton when its total power is 1300 W. The eigenvalues
of the perturbed problem are shown in (c).

AlGaAs array. The power conveyed by the TE polariza-
tion is, in this case, 766 W and in the TM approximately
540 W. The stability of this vector DS state was also
verified by considering the eigenvalues {2 (in the complex
plane) of the perturbed problem as shown in Fig. 2(c). As
can be seen all eigenvalues are real and thus this com-
posite state is stable, in agreement with the numerical
simulations of Figs. 2(a) and 2(b). For this example, the
wave-vector shift of this vector DSis A = 10.6 mm™'. In
addition we have studied the stability dynamics of these
vector DSs when the in-phase condition between the
a,, b, components is not exactly met. We found that the
vector DS exhibits robustness even when the relative
phase difference @1z — Py is of the order of +20°,
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FIG. 3 (color online). Unstable propagation of the (a) TE
component and (b) TM component of an elliptically polarized
vector discrete soliton when its total power is 430 W. The
eigenvalues of the perturbed problem are shown in (c).
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FIG. 4 (color online). The experimental setup is shown
(BS: 50/50 beam splitter, PBS: polarizing BS, PF: polarizing
filter, FA: fixed attenuator, VA: variable attenuator, PA: piezo-
electric actuator, OPA: optical parametric amplifier).

and this is in spite of the fact that some power exchange
between the TE and TM components occurs via four-
wave mixing effects.

The stability properties and evolution dynamics of an
elliptically polarized vector DS were also considered as
shown in Fig. 3. In this figure, the TE component carries
92 W and the TM 330 W, and A = 2.2 mm~!. The corre-
sponding eigenvalues of the perturbed problem are shown
in Fig. 3(c) where the presence of a complex quartet can
be clearly seen. These complex eigenvalues lead to the
instabilities seen in Figs. 3(a) and 3(b). In this case, the
TM component becomes destabilized and couples most of
its power into the TE polarization.

The complete experimental layout is shown in Fig. 4.
The light source was a Spectra Physics OPA-800CP
which produced 1.1 ps FWHM pulses at a 1 kHz repeti-
tion rate. The 1550 nm pulses were attenuated and split
into two orthogonal polarizations using a Michelson
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FIG. 5 (color online). Recorded intensity profiles at the out-
put facet of the waveguide array when (a) only a single TE or
TM component is present and (b) when both components
coalesce to form a vector DS. The power at the input is
650 W for each beam. (c) depicts the FWHM of the output
polarization components as a function of TM power for in-
phase excitation. The TE power was held fixed at 450 W.
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FIG. 6 (color online). Variation of the output TE power
as a function of the TM input power and polarization phase
difference.

interferometer with a polarizing beam splitter. The opti-
cal path length of one arm was adjusted using a piezo-
electric actuator. After recombining the beams a small
part of the total power was split off to monitor the power
in each polarization and the relative phase between them.
The main beam was focused on the front surface of the
sample in such a way that essentially a single waveguide
was excited. The spatial energy distribution at the output
surface was observed using an IR-sensitive vidicon cam-
era and the output power in each polarization was mea-
sured by germanium detectors.

The recorded intensity profiles at the output facet of the
waveguide array when only a single TE or TM component
is present are shown in Fig. 5(a). In both cases, the beam
(TE or TM) is by itself incapable of forming a DS and as
a result it undergoes discrete diffraction (over ten chan-
nels) at a peak power of 650 W. On the other hand, when
both polarizations are present, mutual trapping occurs,
leading to the formation of a highly confined vector DS as
can be seen in Fig. 5(b). This takes place when each
component carries approximately 650 W. This is in close
agreement with the theoretical estimates presented in
Fig. 3 where highly confined vector discrete solitons are
possible in this AlIGaAs array beyond 1200 W total power.
Further experiments were performed in order to better
understand the mechanism through which strongly local-
ized discrete vector solitons form. These were carried out
by combining a TM beam of variable input power with a
TE beam kept at a fixed power level in a single channel in
the array. Figure 5(c) shows the FWHM of the TE/TM
components versus TM input power. When the power of
the TM beam exceeded a certain level (500 W), both
beams abruptly collapsed into one waveguide channel at
the output of the array.

Given that our sample is birefringent, the effect of four-
wave mixing on vector discrete solitons was also experi-
mentally investigated. In general this process is periodic
and depends on the initial phase difference @5 — Py
between the two polarization components. The depen-
dence of the TE output polarization as a function of the
initial relative phase between the two components is
demonstrated in Fig. 6. The TE input power was held
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fixed at 350 W while varying the TM power. The ini-
tial phase difference @5 — Py was varied from 0 to
41 for each TM power level using a piezoelectric actua-
tor. At high powers, both beams collapse into essentially a
single channel, leading to a highly localized vector DS.
At these power levels, we observe at the output a periodic
four-wave mixing gain or loss for the TE component
having an oscillation frequency that is twice that associ-
ated with the input phase difference. This behavior (i.e.,
exp[2i(®pg — Pry)]) can be anticipated from the four-
wave mixing terms in Egs. (1).

In summary, we have observed for the first time highly
localized, vector DSs in AlGaAs nonlinear waveguide
arrays.
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