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Two-Photon Exchange and Elastic Electron-Proton Scattering
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Two-photon exchange contributions to elastic electron-proton scattering cross sections are evaluated
in a simple hadronic model including the finite size of the proton. The corrections are found to be small
in magnitude, but with a strong angular dependence at fixed Q2. This is significant for the Rosenbluth
technique for determining the ratio of the electric and magnetic form factors of the proton at high Q2,
and partly reconciles the apparent discrepancy with the results of the polarization transfer technique.
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where A depends on kinematic variables. This expression of the functions f�Q2; �� for the electron vertex, vacuum
The electromagnetic structure of the proton is reflected
in the Sachs electric [GE�Q2�] and magnetic [GM�Q2�]
form factors. The ratio R � �pGE=GM, where �p is
the proton magnetic moment, has been determined
using two experimental techniques. The Rosenbluth, or
longitudinal-transverse (LT), separation extracts R2 from
the angular dependence of the elastic electron-proton
scattering cross section at fixed momentum transfer Q2.
The results are consistent with R � 1 for Q2 < 6 GeV2

[1,2]. However, recent polarization transfer experiments
at Jefferson Lab [3] measure R from the ratio of the
transverse to longitudinal polarizations of the recoiling
proton, yielding the markedly different result R � 1�
0:135�Q2 � 0:24� over the same range in Q2 [1], which
exhibits nonscaling behavior. In this Letter, we examine
whether this discrepancy can be explained by a reanalysis
of the radiative corrections, in particular, as they affect
the LT separation analysis.

Consider the elastic ep scattering process e�p1� �
p�p2� ! e�p3� � p�p4�. The Born amplitude for one pho-
ton exchange is given by

M 0 � �i
e2

q2
�uu�p3���u�p1� �uu�p4��

��q�u�p2�; (1)

where the proton current operator is defined as

���q� � F1�q
2��� � i

F2�q
2�

2M
���q�; (2)

q � p4 � p2 � p1 � p3 is the four-momentum trans-
ferred to the proton (Q2 � �q2 > 0), M is the proton
mass, and F1 and F2 are linear combinations of the
Sachs form factors GE and GM [see Eqs. (18) and (19)].

The resulting cross section depends on two kinematic
variables, conventionally taken to be Q2 (or � �
Q2=4M2) and either the scattering angle � or the virtual
photon polarization � � 	1� 2�1� ��tan2��=2�
�1. It
can be put in the form

d�0 � A	�G2
M�Q

2� � �G2
E�Q

2�
; (3)
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is modified by radiative corrections, expressed in the form
d� � d�0�1� ��. Usually � is estimated by taking the
one-loop virtual corrections of order � as well as the
inelastic bremsstrahlung cross section for real photon
emission.

The LT separation technique extracts the ratio
�GE=GM�

2 from the � dependence of the cross section at
fixed Q2. With increasing Q2, the cross section is domi-
nated by GM, while the relative contribution of the GE
term is diminished. Hence, understanding the � depen-
dence in the radiative correction � becomes increasingly
important at high Q2. By contrast, the polarization trans-
fer technique involves a ratio of cross sections, and is not
expected to show the same sensitivity to the � depen-
dence of � [4].

The amplitude M1 for the one-loop virtual corrections
can be written as the sum of a ‘‘factorizable’’ term,
proportional to the Born amplitude M0, plus a remain-
der:

M 1 � f�Q2; ��M0 �M1: (4)

Hence, to first order in � (� � e2=4�),

� � 2f�Q2; �� � 2
RefMy

0M1g

jM0j
2 : (5)

The factorizable terms dominate, and include the elec-
tron vertex correction, vacuum polarization, and the in-
frared (IR) divergent parts of the proton vertex and
two-photon exchange corrections. These terms are all
essentially independent of hadronic structure. The had-
ronic model-dependent terms from the finite proton ver-
tex and two-photon exchange corrections are expressed in
M1. These terms are small, and are generally ignored [5].
The finite proton vertex correction was analyzed recently
by Maximon and Tjon [6], who found � < 0:5% for Q2 <
6 GeV2. It does not show a significant � dependence, and
so we drop it here.

The factorizable terms can be classified further. Each
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polarization, and proton vertex terms depend only on Q2,
and therefore have no relevance for the LT separation
aside from an overall normalization factor. Hence, of
the factorizable terms, only the IR divergent two-photon
exchange contributes to the � dependence of the virtual
photon corrections.

For the inelastic bremsstrahlung cross section, the am-
plitude for real photon emission can also be written in the
form of Eq. (4). In the soft photon approximation, the
amplitude is completely factorizable. A significant � de-
pendence arises due to the frame dependence of the
angular distribution of the emitted photon. These correc-
tions, together with external bremsstrahlung, contain the
main � dependence of the radiative corrections, and are
accounted for in the experimental analyses [2].

In principle, the two-photon exchange contribution to
M1, denoted M��, includes all possible hadronic inter-
mediate states (Fig. 1). Here we consider only the elastic
contribution to the full response function, and assume
that the proton propagates as a Dirac particle. We also
assume that the off-shell current operator is given by (2),
and use phenomenological form factors at the �p vertices.
Clearly this creates a tautology, as the radiative correc-
tions are also used to determine the experimental form
factors. However, because � is a ratio, the model depen-
dence cancels somewhat, provided we use the same phe-
nomenological form factors for both M0 and M��

in Eq. (5).
The sum of the two-photon exchange box and crossed

box diagrams has the form

M �� � e4
Z d4k

�2��4

�
Na�k�
Da�k�

�
Nb�k�
Db�k�

�
; (6)

where the numerators are the matrix elements

Na�k� � �uu�p3����6p1 � 6k���u�p1�

� �uu�p4��
��q� k��6p2 � 6k�M����k�u�p2�;

(7)

Nb�k� � �uu�p3����6p3 � 6k���u�p1�

� �uu�p4��
��q� k��6p2 � 6k�M����k�u�p2�;

(8)

and the denominators are the products of the scalar
propagators,
3
p 

2
p  

4
p 

1 p

 k  q−k

FIG. 1. Two-photon exchange box and crossed box diagrams.
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Da�k� � 	k2 � #2
	�k� q�2 � #2


� 	�p1 � k�2 �m2
	�p2 � k�2 �M2
; (9)

Db�k� � Da�k�jp1�k!p3�k: (10)

An infinitesimal photon mass # has been introduced in
the photon propagator to regulate the IR divergences, and
the electron mass m is ignored in the numerator.

The implementation of Eq. (6) is the main result of this
Letter. However, we also want to compare with previous
work, so a partial analysis of the leading terms in (6) is
warranted.

To proceed, we can separate out the IR divergent parts
from the finite ones. There are two poles in the integrand
of (6) where the photons are soft: one at k � 0, and
another at k � q. For the box diagram, the matrix element
can be written as the sum of a contribution at the pole
k � 0 plus a remainder, Na�k� � Na�0� � Na�k�. Ex-
plicitly, we have

Na�0� � 4p1 � p2q2iM0=e2: (11)

The matrix element at the pole k � q is the same, so
Na�q� � Na�0� (this also follows from symmetry argu-
ments). This suggests that the dominant contribution to
the box amplitude can be approximated as

M ��
a � e4Na�0�

Z d4k

�2��4
1

Da�k�
� MIR

a : (12)

There are two assumptions implicit in this approximation.
The first is that the integral involving Na�k� is small, and
contains no ultraviolet (UV) divergences from the F2 part
of the current operator (2).Without hadronic form factors,
Eq. (2) does in fact lead to UV divergences. We demon-
strate below how to get around this difficulty by rewriting
F1 and F2 in terms of the Sachs form factors GE and GM.
The second assumption is that the hadronic form factors
have no significant effect on the loop integral, and can be
factored out. In essence, this assumes that the hadronic
current operators occurring in Eq. (6) can be replaced by
���0� � �� for the vertex involving the soft photon, and
by ���q� for the other vertex.

With these caveats in mind, the IR divergent box am-
plitude from the pole terms can now be written as [6]

M IR
a �

�
�
p1 � p2q

2M0
i

�2

Z
d4k

1

Da�k�

� �
�
�
ln

�
2p1 � p2

mM

�
ln

�
Q2

#2

�
M0: (13)

The four-point function arising from the loop integral has
been evaluated analytically in the limit #2 � Q2 follow-
ing ’t Hooft and Veltman [7].

A similar analysis of the crossed box amplitude shows
that

Nb�0� � 4p3 � p2q
2iM0=e

2; (14)

and, hence,
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M IR
b �

�
�
ln

�
2p3 � p2

mM

�
ln

�
Q2

#2

�
M0: (15)

In the lab frame (p1 � p2 � E1M and p3 � p2 � E3M), the
total IR divergent two-photon exchange contribution to
the cross section is readily seen to be

�IR � �2
�
�
ln

�
E1

E3

�
ln

�
Q2

#2

�
; (16)

a result given by Maximon and Tjon [6]. The logarithmic
terms in m cancel in the sum, while the logarithmic IR
singularity in # is exactly canceled by a corresponding
term in the bremsstrahlung cross section involving the
interference between real photon emission from the elec-
tron and from the proton.

By contrast, in the standard treatment of Mo and Tsai
(MT) [5], the loop integral in (13) is approximated by
setting the photon propagator not at a pole equal to 1=q2.
This results in a three-point function K��p1; p2� which,
unfortunately, has no simple analytic form in the limit
#2 � Q2. After a further approximation K��p1; p2� �
K�p1; p2�, the total IR divergent result is given as [5]

�IR�MT� � �2
�
�
	K�p1; p2� � K�p3; p2�
; (17)

where K�pi; pj� � pi�pj

R
1
0 dy ln�p

2
y=#2�=p2

y and py �
piy� pj�1� y�.

Because �IR�MT� is the result generally used in existing
experimental analyses [1,2], it is useful to compare the �
dependence with that of �IR. The difference �IR �
�IR�MT� is independent of #, and is shown in Fig. 2 as
a function of � for Q2 � 3 GeV2 and Q2 � 6 GeV2. The
different treatments of the IR divergent terms already
have significance for the LT separation, resulting in
roughly a 1% change in the cross section over the range
of �. This effect alone gives a reduction of the order of 3%
and 7% in the ratio R for Q2 � 3 GeV2 and Q2 � 6 GeV2,
respectively.

We return now to the implementation of the full ex-
pression of Eq. (6). The full expression includes both finite
FIG. 2. Difference between the model-independent IR diver-
gent contributions of Eq. (16) and of the commonly used
expression (17).

142304-3
and IR divergent terms (there is no need to treat them
separately), and form factors at the �p vertices. To avoid
sensitivity to the UV divergences in the loop integrals
arising from the F2 part of the current operator (2), we
rewrite F1 and F2 in terms of the Sachs form factors,

F1�q2� �
GE�q

2� � �GM�q
2�

1� �
; (18)

F2�q
2� �

GM�q2� �GE�q2�
1� �

: (19)

GE and GM are taken to have the common form factor
dependence GE�q2� � GM�q2�=�p � G�q2�, with G�q2� a
simple monopole G�q2� � ��2=�q2 ��2�. We leave a
fuller exploration of the hadronic model dependence to
a future paper. Effectively, the F2 part of the current then
behaves similar to a dipole, and the loop integrals are UV
finite for any choice of cutoff mass �.We have taken � �
0:84 GeV, consistent with the size of the nucleon, for
which the results show a plateau of stability. The sensi-
tivity to � is mild because the form factor dependence
enters as a ratio in �.

The loop integrals in Eq. (6) can be evaluated analyti-
cally in terms of four-point Passarino-Veltman functions
[8], and trace techniques used to implement the sum over
Dirac spinors implicit in Eq. (5). This is a formidable task
that is facilitated by the use of established algebraic
manipulation routines.We used two independent packages
(FEYNCALC [9] and FORMCALC [10]), which gave identical
numerical results. The Passarino-Veltman functions were
evaluated numerically using the FF program [11].

The model-independent IR divergent result of Eq. (16)
is an appropriate benchmark with which to compare the
full result �full. Because the IR behavior is the same,
the difference �full � �IR is finite (i.e., independent of
#). The results are shown in Fig. 3. A significant �
dependence is observed, which increases slightly with
Q2. The additional correction is largest at backward
FIG. 3. Difference between the full two-photon exchange
correction and the model-independent IR divergent result of
Eq. (16).
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FIG. 4 (color online). The ratio of form factors measured
using LT separation (hollow squares), together with the global
fit (dashed line). The unshifted LT data represent a binned
average of all LT separated data points with normalization
factors determined by the global fit in Ref. [1]. Filled squares
show the shift in the LT results due to the two-photon exchange
corrections (offset for clarity), and the solid line shows the
effect on the global fit. Error bars have been left unchanged.
The polarization transfer data [3] are shown as hollow circles.
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angles (� ! 0), and essentially vanishes at forward angles
(� ! 1).

To consider the effect on the ratio R determined in the
LT separation, we make a simplified analysis that assumes
the modified cross section is still approximately linear in
�. The results shown in Figs. 2 and 3 are combined, giving
� � �full � �IR�MT�. For each value of Q2 in the range
1–6 GeV2, we fit the correction �1��� to a linear func-
tion of � of the form a�1� b��. The parameter b so
determined behaves roughly like b � 0:014 ln�Q2=0:65�,
with Q2 in GeV2. For the LT separation, the corrected
Eq. (3) becomes

d� � �aA��G2
M�Q

2�	1� �B ~RR2 � b��
; (20)

where B � 1=��2
p��, and ~RR is the corrected ratio R. Since

a � 1, we have essentially ~RR2 � R2 � b=B.
The shift in R is shown in Fig. 4, together with the

polarization transfer data. The effect of the additional
terms is significant. Although some dependence on nu-
cleon structure is expected, these calculations show that
the two-photon corrections have the proper sign and
magnitude to resolve a large part of the discrepancy
between the two experimental techniques. Clearly, there
is room for additional contributions from inelastic nu-
cleon excitation (e.g., the ��). These have been examined
previously in Ref. [12] in various approximations.
Greenhut [12] used a fit to proton Compton scattering
to calculate the resonant contribution to two-photon ex-
change, and found some degree of cancellation with the
nonresonant terms at high energies. Further study of the
142304-4
inelastic region is required, including also the imaginary
part of the response function [13].

Direct experimental evidence for the contribution of
the real part of two-photon exchange can be obtained by
comparing e�p and e�p cross sections. (M0 changes
sign under e� ! e�, whereas M�� does not.) Hence,
we expect to see an enhancement of the ratio
��e�p�=��e�p� due to two-photon exchange (after the
appropriate IR divergences are canceled due to brems-
strahlung). There are experimental constraints from data
taken at SLAC [14] for E1 � 4 GeV and E1 � 10 GeV,
which are consistent with our results. However, the SLAC
data are from forward scattering angles, with � > 0:72,
where we find the two-photon exchange contribution is
& 1%. A more definitive test of the two-photon exchange
mechanism could be obtained at backward angles, where
an enhancement of the order of a few percent is predicted.
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