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How to Reconcile the Rosenbluth and the Polarization Transfer Methods in the Measurement
of the Proton Form Factors
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The apparent discrepancy between the Rosenbluth and the polarization transfer methods for the ratio
of the electric to magnetic proton form factors can be explained by a two-photon exchange correction
which does not destroy the linearity of the Rosenbluth plot. Though intrinsically small, of the order of a
few percent of the cross section, this correction is accidentally amplified in the case of the Rosenbluth
method.
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FIG. 1. Experimental values of RRosenbluth [4] and Rpolarization
[5,6] and their polynomial fits.
The electromagnetic form factors are essential pieces
of our knowledge of the nucleon structure, and this jus-
tifies the efforts devoted to their experimental determi-
nation. They are defined as the matrix elements of the
electromagnetic current J��x� according to

hN�p0�jJ��0�jN�p�i � e �uu�p0�

�
GM�Q

2���

� F2�Q
2�
�p	 p0��

2M

�
u�p�;

(1)

where e ’
�����������������
4�=137

p
is the proton charge, M the nucleon

mass, and Q2 the squared momentum transfer. The mag-
netic form factor GM is related to the Dirac (F1) and Pauli
(F2) form factors byGM � F1 	 F2, and the electric form
factor is given byGE � F1 � �F2, with � � Q2=4M2. For
the proton, F1�0� � 1, andF2�0� � �p � 1 � 1:79. In the
one-photon exchange or Born approximation, elastic
lepton-nucleon scattering,

l�k� 	 N�p� ! l�k0� 	 N�p0�; (2)

gives direct access to the form factors in the spacelike
region (Q2 > 0), through its cross section:

d�B � CB�Q2; "�
�
G2
M�Q

2� 	
"
�
G2
E�Q

2�

�
; (3)

where " is the photon polarization parameter, and
CB�Q2; "� is a phase space factor which is irrelevant in
what follows. For a given value of Q2, Eq. (3) shows that it
is sufficient to measure the cross section for two values of
" to determine the form factors GM and GE. This is
referred to as the Rosenbluth method [1]. The fact that
d�=CB�Q

2; "� is a linear function of " (Rosenbluth plot
criterion) is generally considered as a test of the validity
of the Born approximation.

Polarized lepton beams give another way to access the
form factors [2]. In the Born approximation, the polar-

M
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the motion (Pt) is proportional to GEGM. We call this the
polarization method for short. Because it is much easier
to measure ratios of polarizations, it has been used
mainly to determine the ratio GE=GM through a mea-
surement of Pt=Pl using [3]

Pt

Pl
� �

������������������
2"

��1	 "�

s
GE

GM
: (4)

Thus, in the framework of the Born approximation, one
has two independent measurements of R � GE=GM. In
Fig. 1, we show the corresponding results, which we call
Rexp

Rosenbluth and Rexp
polarization, for the range of Q2 which is

common to both methods. The data are from Refs. [4–6].
It is seen that the deviation between the two methods
starts around Q2 � 2 GeV2 and increases with Q2, reach-
ing a factor 4 at Q2 � 6 GeV2. A recent reanalysis of the
SLAC cross sections [7] and new Rosenbluth measure-
ments from JLab [8] confirm that the Rosenbluth and
polarization extractions of the ratio GE=GM are incom-
patible at large Q2. This discrepancy is a serious problem
as it generates confusion and doubt about the whole
methodology of lepton scattering experiments.
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In this Letter, we take a first step to unravel this
problem by interpreting the discrepancy as a failure of
the Born approximation which nevertheless does not de-
stroy the linearity of the Rosenbluth plot. This means that
we give up the beloved one-photon exchange concept and
enter the not well-paved path of multiphoton physics. By
this we do not mean the effect of soft (real or virtual)
photons, which are the radiative corrections. The effect of
the latter is well under control because their dominant
(infrared) part can be factorized in the observables and
therefore does not affect the ratio GE=GM. Here we con-
sider genuine exchange of hard photons between the
lepton and the hadron. Such higher-order corrections to
the one-photon exchange approximation have been con-
sidered in the past [9,10], and their effects were found to
be of the order of 1%–2% on the cross section. However,
such estimates based on nucleon and resonance inter-
mediate states can only be expected to give a realistic
description of the nucleon structure for momentum trans-
fers up to Q2 & 1 GeV2, whereas they are largely un-
known at higher values of Q2.

Even if we restrict ourselves to the two-photon ex-
change case, the evaluation of the box diagram (Fig. 2)
involves the full response of the nucleon to doubly virtual
Compton scattering, and we do not know how to perform
this calculation in a model independent way. Therefore we
adopt a modest strategy based on the phenomenological
consequences of using the full eN scattering amplitude
rather than its Born approximation. Though it cannot lead
to a full answer, it produces the following interesting
results: (a) The two-photon exchange amplitude needed
to explain the discrepancy is actually of the expected
order of magnitude, that is a few percent of the Born
amplitude. (b) There may be a simple explanation of the
fact that the Rosenbluth plot looks linear even though it is
strongly affected by the two-photon exchange. (c) The
polarization method result is little affected by the two-
photon exchange, at least in the range of Q2 which has
been studied until now.

To proceed with the general analysis of elastic electron-
nucleon scattering (2), we adopt the usual definitions:

P �
p	 p0

2
; K �

k	 k0

2
;

q � k� k0 � p0 � p;
(5)

and choose
k ’

p ’

k

p

FIG. 2. The box diagram. The filled blob represents the re-
sponse of the nucleon to the scattering of the virtual photon.
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Q2 � �q2;  � K � P; (6)

as the independent invariants of the scattering. The po-
larization parameter " of the virtual photon is related to
the invariant  as (neglecting the electron mass me)

" �
 2 �M4��1	 ��

 2 	M4��1	 ��
: (7)

For a theory which respects Lorentz, parity, and
charge conjugation invariance, the T matrix for elastic
scattering of two spin 1=2 particles can be expanded in
terms of six independent Lorentz structures which, fol-
lowing Ref. [11], can be chosen as �uu�k0�u�k� �uu�p0� 
u�p�, �uu�k0�u�k� �uu�p0�� � Ku�p�, �uu�k0��5u�k� �uu�p

0��5u�p�,
�uu�k0�� � Pu�k� �uu�p0�� � Ku�p�, �uu�k0�� � Pu�k� �uu�p0�u�p�,
and �uu�k0��5� � Pu�k� �uu�p0��5� � Ku�p�. In the limit me !
0, the vector nature of the coupling in QED implies that
any Feynman diagram is invariant under the chirality
operation u�k� ! �5u�k�, �uu�k0� ! � �uu�k0��5. Therefore
the Lorentz structures which change their sign under
this operation must come with an explicit factor me.
This allows us to neglect the structures which contain
either �uu�k0�u�k� or �uu�k0��5u�k�. Using the Dirac equation
and elementary relations between Dirac matrices, the
linear combination of the remaining three amplitudes
can be written in the form

T �
e2

Q2
�uu�k0���u�k�

 �uu�p0�

�
~GGM�

� � ~FF2
P�

M
	 ~FF3

� � KP�

M2

�
u�p�; (8)

where ~GGM, ~FF2, ~FF3 are complex functions of  and Q2, and
where the factor e2=Q2 has been introduced for conve-
nience. In the Born approximation, one obtains

~GGBorn
M � ;Q2� � GM�Q2�; ~FFBorn

2 � ;Q2� � F2�Q2�;
~FFBorn
3 � ;Q2� � 0: (9)

Since ~FF3 and the phases of ~GGM and ~FF2 vanish in the Born
approximation, they must originate from processes in-
volving at least the exchange of two photons. Relative
to the factor e2 introduced in Eq. (8), we see that they are
at least of order e2. This, of course, assumes that the
phases of ~GGM and ~FF2 are defined, which amounts to
supposing that, in the kinematical region of interest, the
moduli of ~GGM and ~FF2 do not vanish, which we take for
granted in the following. Defining

~GGM � ei$M j ~GGMj; ~FF2 � ei$2 j ~FF2j; ~FF3 � ei$3 j ~FF3j;

(10)

and using standard techniques, we get the following ex-
pressions for the observables of interest:
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d� � CB� ;Q2�
"�1	 ��

�


�
j ~GGMj

2 %
2 � �	 �2

%2 � �� �2
	 j ~FF2j

2�1	 �� � 2j ~GGMj�cos$2Mj ~FF2j � cos$3Mj ~FF3j%�

� 2 cos$23j ~FF2
~FF3j%	 j ~FF3j

2�%2 � �2�
	
; (11)

Pt

Pl
� �

��������������������������
%2 � �� �2

�

s


j ~GGMj � cos$2Mj ~FF2j�1	 �� 	 cos$3Mj ~FF3j%

j ~GGMj%	 cos$3Mj ~FF3j�%2 � �� �2�
; (12)
with $2M � $2 �$M, $3M � $3 �$M, $23 �
$2 �$3, and % �  =M2. If one substitutes the Born
approximation values of the amplitudes (9), then
Eqs. (11) and (12) give back the familiar expressions of
Eqs. (3) and (4).

To simplify the above general expressions, we make the
very reasonable assumption that only the two-photon
exchange needs to be considered. In practice we make
an expansion in power of e2 of Eqs. (11) and (12) using the
fact that $M, $2, and ~FF3 are at least of order e2, but we do
not expand j ~GGMj and j ~FF2j, which is perfectly legitimate.
This leads to the following approximate expressions:

d�

CB�";Q
2�

’
j ~GGMj

2

�

�
�	 "

j ~GGEj
2

j ~GGMj
2

	 2"
�
�	
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�
R

�
 ~FF3

M2j ~GGMj

�	
;

(13)
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�
 ~FF3
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�	
;

(14)

where the neglected terms are of order e4 with respect to
the leading one. By analogy, we have defined

~GGE � ~GGM � �1	 �� ~FF2; (15)

and R denotes the real part. Note that ~GGBorn
E � ;Q2� �

GE�Q
2�. To set the scale for the size of the two-photon

exchange term � ~FF3�, we introduce the dimensionless ratio:

Y2�� ;Q
2� � R

�
 ~FF3

M2j ~GGMj

�
: (16)

In the region of large Q2 which is where the discrepancy
really gets large, � is of the order of 1 or larger, while we
can take as upper bound estimate j ~GGEj=j ~GGMj ’
GE�0�=GM�0� � 1=2:79. So, for a qualitative reasoning,
we can neglect j ~GGEj=j ~GGMj with respect to � and, up to a
term quadratic in Y2�, the cross section has the form
j ~GGMj

2�1	 " Y2��
2. So we expect Y2� � ' ’ 1=137.

However, in the Rosenbluth method where one identifies
�GE=GM�

2 with the coefficient of ", the two-photon effect
comes as a correction to a small number ��1=2:79�2. So,
we expect that the correction will have a stronger effect
in the Rosenbluth than in the polarization method.
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From Eqs. (13) and (14), we see that the pair of ob-
servables �d�; Pt=Pl� depends on j ~GGMj, j ~GGEj, and R� ~FF3�.
In the first approximation, we know that j ~GGM� ;Q2�j ’
GM�Q2�, j ~GGE� ;Q2�j ’ GE�Q2�, and only R� ~FF3� is really
a new unknown parameter. Thus, allowing for two-
photon exchange somewhat complicates the interpretation
of the lepton scattering experiments but not in a dramatic
way. The main uncertainty is the dependence on  (or ")
of ~FF3 and, to further simplify the problem, we make the
following observations. First, if we look at the data of
Ref. [4] for d�=CB�";Q2� as a function of ", we observe
that for each value of Q2 the set of points is pretty well
aligned. We see in Eq. (13) that this can be understood if,
at least in the first approximation, the product  ~FF3 is
independent of ". We do not have a first principle expla-
nation for this, but we feel allowed to take it as experi-
mental evidence. To explain the linearity of the plot, one
must also suppose that j ~GGMj and j ~GGEj are independent of "
(that is  ), but since the dominant term of these ampli-
tudes depends only on Q2 this is a very mild assumption.
We then see from Eq. (13) that what is measured using the
Rosenbluth method is

�Rexp
Rosenbluth�

2 �
j ~GGEj

2

j ~GGMj
2
	 2

�
�	

j ~GGEj

j ~GGMj

�
Y2�; (17)

with j ~GGEj=j ~GGMj and Y2� essentially independent of ",
rather than �Rexp

Rosenbluth�
2 � �GE=GM�

2, as implied by
one-photon exchange. Second, the experimental results
of the polarization method have been obtained for a
rather narrow range of ", typically from " � 0:75 to 0.9
for the points at large Q2. So, in practice, we can neglect
the " dependence of Rexp

polarization, and from Eq. (14) we see
that this experimental ratio must be interpreted as

Rexp
polarization �

j ~GGEj

j ~GGMj
	

�
1�

2"
1	 "

j ~GGEj

j ~GGMj

�
Y2�; (18)

rather than Rexp
polarization � GE=GM. In order that Eq. (18) be

consistent with our hypothesis, we should find that Y2� is
small enough that the factor 2"=�1	 "� introduces no
noticeable " dependence in Rexp

polarization.
We can now solve Eqs. (17) and (18) or j ~GGEj=j ~GGMj and

Y2� for each Q2 . Since the system of equations is equiva-
lent to a cubic equation, it is more efficient to solve it
numerically. For this, we have fitted the data by a poly-
nomial in Q2 as shown in Fig. 1, and we shall consider
this fit as the experimental values. In particular, we do not
142303-3
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attempt to represent the effect of the error bars which can
be postponed to a more complete reanalysis of the data.
The solution of Eqs. (17) and (18) for the ratio Yexp

2� is
shown in Fig. 3 where we can see that, as expected, it is
essentially flat as a function of " and small, of the order of
a few percent. Thus, a tiny correction allows the Rosen-
bluth and the polarization method to give the same value
for j ~GGEj=j ~GGMj. It is reasonable to think that (GE � ~GGE �
GE and (GM � ~GGM �GM are comparable to Yexp

2� , and
therefore j ~GGEj=j ~GGMj should not be very different from the
actual value of GE=GM. So it makes sense to compare the
value we get for Rexp

1�	2� � j ~GGEj=j ~GGMj with the starting
experimental ratios Rexp

Rosenbluth and Rexp
polarization. This is

shown in Fig. 4, from which we see that Rexp
1�	2� is close

to Rexp
polarization. The difference between the two curves can

be attributed either to Yexp
2� or to �(GM; (GE�. Insofar as

�(GM; (GE� are of the same order of magnitude as Yexp
2� ,

which is small according to our analysis, our interpreta-
tion of this small difference is that the polarization
method is little affected by the two-photon correction.

In summary, the discrepancy between the Rosenbluth
and the polarization methods for GE=GM can be attrib-
uted to a failure of the one-photon approximation which
is amplified at large Q2 in the case of the Rosenbluth
method. The expression for the cross section also suggests
that the two-photon effect does not destroy the linearity
of the Rosenbluth plot provided the product R� ~FF3� is
independent of  . It remains to be investigated if there is a
fundamental reason for this behavior or if it is fortuitous.
Using the existing data, we have extracted the essential
piece of the puzzle, that is the ratio Yexp

2� which measures
the relative size of the two-photon amplitude ~FF3. Within
our approximation scheme, we find that Yexp

2� is of the
order of a few percent. This is a very reassuring result
since this is the order of magnitude expected for two-
photon corrections. What is needed next is a realistic
evaluation of this particular amplitude. A first step in
this direction was performed very recently in Ref. [12],
where the contribution to the two-photon exchange am-
plitude was calculated for a nucleon intermediate state in
Fig. 2. The calculation of Ref. [12] found that the two-
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photon exchange correction with intermediate nucleon
has the proper sign and magnitude to resolve a large
part of the discrepancy between the two experimental
techniques, confirming the finding of our general analy-
sis. As a next step, an estimate of the inelastic part is
needed to fully quantify the nucleon response in the two-
photon exchange process.

From our analysis, we extract the ratio j ~GGEj=j ~GGMj
which in the first approximation should not be very differ-
ent from GE=GM. We find that it is close to the value
obtained by the polarization method when one assumes
the one-photon exchange approximation. This compari-
son is meaningful if, as suggested by the smallness of
Yexp
2� , (GE and (GM are negligible. This could be checked

by a realistic calculation of the two-photon corrections.
However, we think that a definitive conclusion will wait
for the determination of (GE and (GM as we did for Yexp

2� .
The necessary experiments probably require the use of
positrons as well as electron beams.
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