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Unity of Elementary Particles and Forces in Higher Dimensions
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The idea of unifying all the gauge and Yukawa forces as well as the gauge, Higgs, and fermionic
matter particles naturally leads us to a simple gauge symmetry in higher dimensions with super-
symmetry. We present a model in which, for the first time, such a unification is achieved in the
framework of quantum field theory.
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complex coordinate z of the extra dimensions under
The idea of grand unification in four dimensions (4D)
was introduced to unify the three different forces of
nature, strong, weak, and electromagnetic, as a single
force in a simple gauge group such as SU�5� [1]. The
gauge symmetry is broken spontaneously at a high scale
around 1016 GeV, called the grand unified theory scale,
using Higgs mechanism. The supersymmetric versions of
these theories are in good agreement with experiment.
These theories also make several interesting predictions
such as proton decay and neutrino masses. The short-
comings of such theories are that they do not unify all
the forces. The Yukawa interactions remain unrelated to
the gauge interactions. Also, all the particles are not
unified: gauge, Higgs and matter fermions remain in
different representations of the gauge symmetry group.
In this Letter, we propose a simple model which unifies
the forces (strong, electroweak, as well as Yukawa) in the
gauge interaction of a unifying symmetry group, as well
as unifies the elementary particles which include the
gauge, Higgs, and two families of fermions in a single
adjoint representation of this symmetry group.

An attractive motivation to extend the number of di-
mensions beyond the usual four is that the variety of
particles in nature can be understood by means of a
geometrical language. In the original idea by Kaluza-
Klein [2], the 4D gauge fields are included in the higher
dimensional metric tensor. Gauge symmetries can be
broken and the matter fermions can be chiral by compac-
tifying these extra dimensions in a suitable orbifold and
using appropriate boundary conditions [3–5]. Certain
generic problems in 4D grand unified theories, such as
doublet-triplet splitting, are naturally solved in such a
framework [5,6]. Another attractive feature in such
higher dimensional theories is that the gauge fields
with the extra dimensional components behave as sca-
lar fields in 4D, and these can be used as Higgs fields
which break gauge symmetry [3,7–10]. The masses of
such scalar fields are prohibited by gauge invariance,
and in supersymmetric theories, these remain mass-
less at the low energy due to the nonrenormalization
theorem. Thus those scalar fields can be good candidates
for the low energy Higgs fields which break electroweak
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In the higher dimensional supersymmetric theories, the
gauge multiplet, which is an extended supersymmetry
multiplet, contains both the vector multiplet and the
chiral supermultiplets in the language of 4D N � 1 super-
symmetry. Assigning different transformation property
between vector multiplet and chiral supermultiplets, we
can make vector multiplet massless but chiral supermul-
tiplets heavy in 4D, which means that the extended super-
symmetry can be broken down to N � 1 supersymmetry.
If we also break gauge symmetry through orbifold com-
pactification simultaneously, the chiral supermultiplets
which correspond to the broken generators can have
zero modes, which remain massless at low energy. We
can, then, identify such supermultiplets with the low
energy fermion and Higgs fields. Several of these ideas
have been separately realized, such as gauge-Higgs uni-
fication with gauge-Yukawa unification [11], or having
three families of fermions in a higher dimensional mul-
tiplet [12,13], or gauge-Higgs-matter unification with one
family of fermions [14].

We consider N � 2 supersymmetry in 6D with gauge
group SO�16�. The gauge symmetry SO�16� is broken
down to Pati-Salam [15] symmetry with three extra
U�1�’s in 4D through T2=Z6 orbifold compactification.
The gauge bosons, Higgs fields, and the two families of
quarks and leptons are unified in the 6D N � 2 gauge
multiplet. Another family is naturally introduced as brane
fields to cancel the gauge anomalies. Thus, this gives a
three-family model. The numerical agreement of this
gauge-Yukawa unification prediction for all the gauge
and the third family Yukawa couplings is good as we
shall see later.

The N�2 supersymmetry in 6D corresponds to N�4
supersymmetry in 4D, thus only the gauge multiplet can
be introduced in the bulk. In terms of 4D N � 1 language,
the gauge multiplet contains vector multiplet V�A
; ��
and three chiral multiplets 
, �, and �c in the adjoint
representation of the gauge group. The fifth and sixth
components of the gauge fields, A5 and A6, are contained
in the lowest component of 
, i.e., 
j�� ����0 �
�A6 � iA5�=

���
2

p
. The bulk action can be found in [16].

The T2=Z orbifold is constructed by identifying the
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TABLE I. A list of the zero modes in chiral multiplets.

63 28 28


 L3:�4; 2; 1�1;0;0 S1:�1; 1; 1��1;1;�1 R2:�4; 1; 2�0;1;1
S2:�1; 1; 1��1;�3;�1

� R3:�4; 1; 2��1;�2;0 L2:�4; 2; 1�0;1;�1 H3:�1; 2; 2�1;1;1
�c H1:�1; 2; 2�0;2;0 C1:�6; 1; 1�1;1;�1 C2:�6; 1; 1��1;�1;1

H2:�1; 2; 2�0;�2;0
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Z6:z ! !z, where !6 � 1. We can impose the transfor-
mation property of the gauge multiplet as [16,17]

V�x
; !z; �!! �zz� � R � V�x
; z; �zz�; (1)


�x
; !z; �!! �zz� � �!!R �
�x
; z; �zz�; (2)

��x
; !z; �!! �zz� � !lR ���x
; z; �zz�; (3)

�c�x
; !z; �!! �zz� � !mR ��c�x
; z; �zz�; (4)

where R acts on the gauge space satisfying R6 to be
the identity mapping since V�x
; !6z; �!!6 �zz� should be
equal to V�x
; z; �zz�. Nontrivial R breaks the gauge sym-
metry. These transformation properties break N � 4
supersymmetry down to N � 1 in 4D. Because the bulk
action contains the trilinear term, 
	�;�c
, and the
action must be invariant under the transformations (1)–
(4), we have a relation l � m � 1 (mod 6). We will choose
l � 4, m � 3.

The adjoint of SO�16� is represented by 16� 16 real
antisymmetric matrices. The gauge twisted mapping R is
represented as R � V � RVRT where R is a matrix which
satisfies that R6 � I (I is the identity matrix). If we take

the matrix R � diag�!; . . . ; !
z�����}|�����{8

; �!!; . . . ; �!!
z�����}|�����{8

�, SO�16� is
broken down to SU�8� � U�1�. The adjoint 120 is
decomposed as 120 � 630 � 10 � 28�1 � 281 under
SU�8� � U�1�. The U�1� charges in some normalization
are given by subscript. In the following, we denote this
U�1� symmetry by U�1�3. The vector multiplet V is de-
composed as V120 � V63 � V1 � V28 � V28, and simi-
larly for the chiral multiplets 
, �, and �c. The Z6

charges are determined as 1 for V63 � V1, !2 for V28,
and �!!2 for V28. The Z6 charge assignments for 
, �, and
�c are obtained by multiplying with �!!, !l, and !m,
respectively.

Now we take the matrix R � diag�!a=2R8; �!!
a=2Ry

8 �
where R8 is an 8� 8 unitary matrix which satisfies
R6
8 � I. The Z6 transformation property for the vector

multiplet V is easily obtained as

V63�x
; !z; �!! �zz� � R8V63�x
; z; �zz�Ry
8 ; (5)

V28�x

;!z; �!! �zz� � !aR8V28�x


; z; �zz�R8; (6)

V28�x

; !z; �!! �zz� � �!!aRy

8V28�x

; z; �zz�Ry

8 ; (7)

V1�x
; !z; �!! �zz� � V1�x
; z; �zz�: (8)

The transformation property for 
, �, and �c are ob-
tained by multiplying with �!!, !l, and !m, respectively.
We choose the unitary matrix R8 as

R8 � diag�!b; !b; !b; !b; !c; !c; !d; !d�: (9)

With this choice (a is odd and b, c, d are different
numbers modulo 6), SO�16� breaks down to SU�4� �
141801-2
SU�2�L � SU�2�R � U�1�3, and the 4D theory becomes
N � 1 supersymmetric Pati-Salam model with three ex-
tra U�1� symmetries.

The SU�8� � U�1�3 representations 630, 10, 28�1, and
281 are decomposed under the SU�4� � SU�2�L � SU�2�R
in the following matrix form:

63 0 �

2
4 �15;1;1� �4;2;1� �4;1;2�

�4;2;1� �1;3;1� �1;2;2�
�4;1;2� �1;2;2� �1;1;3�

3
5��1;1;1�� �1;1;1�;

(10)

1 0 � �1; 1; 1�; (11)

28�1 �

2
4 �6; 1; 1� �4; 2; 1� �4; 1; 2�

�1; 1; 1� �1; 2; 2�
�anti-sym� �1; 1; 1�

3
5; (12)

281 �

2
4 �6; 1; 1� �4; 2; 1� �4; 1; 2�

�1; 1; 1� �1; 2; 2�
�anti-sym� �1; 1; 1�

3
5; (13)

The Z6 transformation properties for these decomposed
representations of the vector multiplet V are easily ob-
tained from Eqs. (5)–(8), and similarly for the chiral
multiplets 
, �, and �c.

We choose the matrix R8 as

R8 � diag�1; 1; 1; 1; !5; !5; !2; !2� (14)

to pick up one chiral family from 63. Then, the num-
ber a is chosen as a � 3 to make all the V28 and V28
massive. We can extract zero modes in the chiral super-
fields 
, �, and �c through the transformation prop-
erty (2)–(4) with �l; m� � �4; 3�. The zero modes are
listed in Table I. The Li and �RRi include left- and right-
handed quarks and leptons and Ci includes vector-
like colored Higgs. The model thus includes two chiral
families in the bulk and three electroweak bidoublets Hi.
The subscripts in Table I denote the charges under the
U�1�1 � U�1�2 � U�1�3 symmetry. The U�1�1 and U�1�2
symmetries originate from the SU�8� generators:
diag�1; 1; 1; 1;�1;�1;�1;�1�=2 for U�1�1 and
diag�1; 1; 1; 1; 1; 1;�3;�3�=2 for U�1�2.

Since the three chiral multiplets 
, �, and �c are in
the gauge multiplet, those chiral superfields have gauge
interactions with each other in 6D. The trilinear gauge
interaction term

���
2

p

	�;�c
 in the action includes bulk
141801-2
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superpotential for the zero modes,

S �
Z

d6x
Z

d2�y6� L3H1
�RR3 � L2H2

�RR2

� �H1S2 � H2S1�H3 � �RR3C1
�RR2

� L3C2L2� � H:c:; (15)

which includes Yukawa couplings.
Taking into account the normalization factors of the

wave functions in the kinetic term, and using conven-
tional normalization of the gauge coupling, we find that
the 6D Yukawa coupling is equal to 6D gauge coupling,
y6 � g6. The corresponding 4D couplings are derived as
the coordinates of the extra dimensions are integrated out
in the action. Thus, the 4D Yukawa and gauge couplings
can be the same dimensionless number if the following
conditions are satisfied [14]: (i) The brane-localized
gauge and Yukawa interactions and their threshold cor-
rections can be negligible. (ii) The zero modes of the
fermions are not localized at different points on the
orbifold. (iii) The 4D fields are not largely mixed with
other brane-localized fields.

We now discuss the implications of the bulk interaction
in Eq. (15). Suppose that the vacuum expectation values
are given to S1 and S2 which are singlets under Pati-Salam
symmetry. Then one linear combination of H1 and H2, as
well as H3 become heavy, and the following linear com-
bination remains light:

H � �H1S1 � H2S2�=
������������������
S2
1 � S2

2:
q

(16)

The Yukawa coupling terms are rewritten by using this
light bidoublet Higgs as

L3H1
�RR3 � L2H2

�RR2 !
S1L3H �RR3 � S2L2H �RR2�����������������

S2
1 � S2

2

q : (17)

The bulk superpotential term has a Z2 flavor symmetry
such as

L3 $ L2; �RR3 $ �RR2; H1 $ H2; S1 $ S2;

H3 $ �H3; C1 $ �C1; C2 $ �C2:

(18)

The vacuum expectation values of S1 and S2 break this Z2

symmetry. Assuming hS1i � hS2i, we obtain the fermion
mass hierarchy between the 3rd and 2nd family, suppos-
ing that L3 and �RR3 are for the 3rd family and L2 and �RR2

are for the 2nd family. Of course, this is just a toy
structure, since we still have a wrong relation, mc=mt �
ms=mb � m
=m". We do not have flavor mixing in the
bulk superpotential either. These problems can be solved
by introducing brane-localized interaction. The vacuum
expectation values of SU�2�R triplet and SU�4� adjoint
Higgs can break the wrong mass relation in a similar way
as in the usual Pati-Salam model.

We briefly comment on the colored Higgs C1 and C2.
These can get masses from a brane-localized term
141801-3
mC1C2. This mass term does not violate the baryon and
lepton number conservation. The mass terms such as mC2

1
or mC2

2 violate the conservation, but such mass terms are
forbidden by the extra U�1� symmetries.

Since we project out the vector-like partners by Z6, the
remaining fermion components in Table I give rise to
gauge anomalies for the two linear combinations of three
extra U�1� symmetries. Green-Schwarz mechanism [18]
can be used to cancel out for only one linear combina-
tion. Thus we have to introduce other brane fields which
are nonsinglets under Pati-Salam symmetry to cancel
these anomalies. This can be interpreted as the origin of
the 1st family. For example, if we introduce brane fields
such as

L1:�4;2;1��1;�1;1; R1:�4;1;2�1;1;�1; H4:�1;2;2��1;�1;1;

the anomalies such as SU�4�2 � U�1�, SU�2�2L � U�1�,
and SU�2�2R � U�1� are canceled out. Then, introducing
appropriate singlet under Pati-Salam symmetry with
nonzero extra U�1� charges, we can obtain anomaly free
particle contents. If we adopt the Green-Schwarz mecha-
nism, we can make it anomaly free by introducing L1 and
�RR1 with appropriate U�1� charges without introducing H4.
In any case, this model contains three families naturally.

We identify the two families originating from gauge
multiplet with the 3rd and 2nd (or 1st) families. First (or
the 2nd) family is identified to be the brane-localized
fields at 3-brane fixed point. Then the Yukawa couplings
for 3rd family, yt, yb, and y", are unified to the gauge
couplings at the compactification scale, if we neglect a
small correction in Eq. (17), and the correction coming
from brane-localized interactions by assuming large vol-
ume suppression. The hierarchy of Yukawa couplings for
the second (or 1st) family is derived by assuming hS1i �
hS2i as we mentioned before, and the Yukawa couplings
for 1st (or 2nd) family are naturally small since their
values are suppressed by volume factor of the extra
dimensions.

We have made a choice that L3 and �RR2 are in the chiral
multiplet 
, and �RR3 and L2 are in the �. Since the scalar
components of 
 consist of gauge fields with extra di-
mensional coordinates, the gauge transformation of 
 is
different from the transformation of �, and the brane-
localized 4D Lagrangian is not left-right symmetric. The
electroweak Higgs fields, H1 and H2, are in the chiral
multiplets �c and its gauge transformation is homoge-
neous, and thus we can introduce the brane-localized
Yukawa coupling terms which give naturally small
Cabibbo-Kobayashi-Maskawa mixing angles.

We can also introduce the brane-localized right-
handed neutrino mass term for �RR3 with the brane fields
�4; 1; 2�, and the neutrino mass becomes small through the
seesaw mechanism. However, �RR2 is in the 
 whose
gauge transformation is inhomogeneous, and hence we
cannot introduce the brane-localized Majorana mass
term for �RR2. Therefore, the Majorana mass term for �RR2
141801-3
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should arise from bulk interaction. Since A � �c@�����
2

p
�c	
;�
 is gauge covariant, �TrA�2 � TrA2 can be

gauge invariant bulk interactions. Such higher order
bulk interactions include Majorana mass terms of �RR2, if
we assume that �4; 1; 2� component in � and �c get
vacuum expectation values. The vacuum expectation val-
ues of �4; 1; 2� component also break Pati-Salam symme-
try down to the standard model. The vacua should satisfy
the F- and D-flat conditions. If the vacua of 
, �, and �c

are commutative and a holomorphic function of z or �zz,
then the F- and D- flat conditions are satisfied. Because of
double periodicity, the vacua should be elliptic functions.
We obtain the 4D Majorana mass terms by integrating out
with respect to extra dimensions on the fundamental area
of T2=Z6.

We now discuss the numerical predictions of our model.
We assume that the compactification scale from 6D to 4D
is the same scale where SU�4� � SU�2�L � SU�2�R �
U�1�3 gauge symmetry are broken to the standard model,
choosing appropriate Higgs superfields. So below the
compactification scale, we have the usual MSSM particle
contents with the gauge-Yukawa unification condition for
the particles of the third family

g1 � g2 � g3 � yt � yb � y"; (20)

where g1, g2, and g3 correspond to the hypercharge (with
proper normalization), weak, and strong interaction cou-
plings and yt, yb, y" are the top, bottom, and tau Yukawa
couplings, respectively.

Because of a crucial reduction of the number of the
fundamental parameters from the gauge-Yukawa coupling
unification, we are lead immediately to a number of
distinctive predictions (in the absence of any large super-
symmetric threshold corrections). Using the values of the
electroweak parameters sin2�w � 0:2311 0:0001 and
'EM � 127:92 0:02 at MZ scale [19], we can determine
the unification scale and unified coupling constant. Then,
evolving the remaining couplings from the unification
scale to the low energy (the numerical calculation of
gauge-Yukawa unification in a 4D model is demonstrated
in Ref. [20]), we predict [14]

'3�MZ� � 0:123; mt � 178 GeV;

mb=m"�MZ� � 1:77; tan* � 51:
(21)

These are in good agreement with the experimental data
[19] except the small discrepancy for '3 (world average
value is '3 � 0:117 0:002 [19]). The small discrepancy
for '3 can be easily improved if we consider a unifica-
tion scale threshold of SU�4� sextet, C1 and C2. The
prediction for tan* can be tested in the upcoming collider
experiments.

In conclusion, we have presented a model in 6D with
N � 2 supersymmetry which unify, for the first time, the
strong, electroweak, and Yukawa forces as well as the
elementary particles in the framework of local quantum
field theory [21].
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