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We present the first concrete evidence for the classical stability of vortons, circular cosmic string
loops stabilized by the angular momentum of the charge and current trapped on the string. We begin by
summarizing what is known about vorton solutions and, in particular, their analytic stability with
respect to a range of radial and nonradial perturbations. We then discuss numerical results of vorton
simulations in a full 3D field theory, that is,Witten’s original bosonic superconducting string model with
a modified potential term. For specific parameter values, these simulations demonstrate the long-term
stability of sufficiently large vorton solutions created with an elliptical initial ansatz.
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perturbed initial conditions.
The framework.—Our study is based on the model first

proposed in Ref. [2] :

of string loops. These loops, which were dubbed vortons
in Refs. [8,9], cannot decay because of the angular mo-
mentum of their charge carriers.
Introduction.—Topological defects are known to play
an important role in many physical contexts and they
may also impact cosmology, the relativistic setting for
this present study (for a review, see Ref. [1]). Among
the possible cosmic defects, vortex strings have a promi-
nent position because they naturally evolve into a scale-
invariant configuration, therefore avoiding analogs of
the monopole problem of cosmological domination.
These strings might be responsible for a variety of astro-
physical phenomena, such as cosmic rays, gravitational
wave radiation, or gravitational lensing. The richness of
their phenomenology comes in part from the possibility
of additional internal structure, making them supercon-
ducting [2].

These superconducting strings have been widely
studied, and this article follows a companion paper [3],
which investigated in detail the model studied here.
Let us mention that the potential existence of vorton
solutions has been postulated recently in other impor-
tant physical contexts such as QCD [4] and high-Tc
superconductivity [5], and some new cosmological vorton
scenarios have been suggested [6]. We note that if we
are able, here, to establish vorton stability in vacuum
(i.e., resisting collapse due to the powerful tension of
a relativistic string), then these results bode well for their
as yet untested stability in less extreme physical situ-
ations. We emphasize that here we are focusing on classi-
cal vorton stability, while for a discussion of quantum
stability the reader is referred to [7] and references
therein.

The structure of this letter is as follows: After sum-
marizing our previous results for vorton equilibrium
states, we will examine additional relevant perturbations
which we have observed as a result of our work. Finally,
we will give an account of our numerical results on
vortons and their long-term stability given elliptically
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where the two complex scalar fields � and � are mini-
mally coupled, each being invariant under U�1� trans-
formations.

If the constants of the theory (the couplings and the
vacuum expectation values) are chosen carefully, one can
break the � symmetry, leading to j�j � ��, while keep-
ing � � 0 in the vacuum, because of the nonvanishing
interaction term. Along a � cosmic string, the interaction
vanishes, and � can form a condensate. (For a detailed
account of this model, and for the bounds on parameters,
see Ref. [3].)

This j�j condensate can also carry charge and currents
along the string (taken to lie on the z axis), as can be
readily seen from the ansatz:

� � j�j�r�ei�!t�kz�; (2)

which induces a (Noether) charge Q and a current J on
the string world sheet:

Q � !
Z
dz

Z
dS j�j2 ; J � k

Z
dz

Z
dS j�j2;

(3)

as well as a topologically conserved quantity, the winding
number:

N �
Z
dz

k
2�

: (4)

These features alter significantly the standard string cos-
mology scenario, with perhaps the most striking conse-
quence of superconductivity being the classical stability
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We present in Fig. 1 a typical, straight superconducting
string profile. In general, one can expect a condensate
somewhat broader than the underlying vortex: �� > ��,
or equivalently,��2

� � 1
2���

2
� � m2

� < m2
� � 1

2���
2
�. It

is probably worth emphasizing here the model depen-
dence of vorton studies: the parameter space is very
broad, and we need a specific particle physics model
fixing the couplings to make more precise predictions
about their properties.

In our previous paper, we have been able to analyticaly
characterize the equilibrium states proving, in principle,
that vortons should occur for every initial nonzero value
of Q and N. If, as usual, we call � the string tension, and
we define

� �
Z
dS j�j2 ; �4 �

Z
dS j�j4 ; (5)

we can recall the following equilibrium conditions. In the
chiral case !2 � k2, vortons will shrink or expand until:

!2 � k2 �
�
��

1

4
���4o

��
�2�o� ; (6)

where the suffix o denotes the chiral value of a quantity
(or equivalently, when ! � k � 0). In the electric (!2 >
k2) or magnetic (!2 < k2) regimes, given that �QN �
Q=N, we showed that the vorton state would minimize
the following function of !2 � k2 � u2:

E � N

2
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vuut
3
5; (7)

which clearly admits such a minimum. Given an initial
state with small seed charges and currents, we demon-
strated that the smaller final equilibrium state will ge-
nerically be located away from the chiral state (which is
not an attractor—see Ref. [3] for details).
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FIG. 1. Profiles of� and �, plotted in units of �� and ��; the
parameters here are �� � 1:5, �� � 1:0, �� � 10:0, �� � 0:5,
� � 1:5
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Stablity analysis.—We employed numerical methods to
investigate the behavior of these equilibrium vorton
states, which enabled us to identify and analytically
characterize various instabilities corresponding to differ-
ent regimes of the loop.We have already proved in [3] that
a straight superconducting string cannot evolve too
deeply into the magnetic regime (!2 < k2), because of
nonlinear effects that force the condensate to become
pinched locally and to unravel, thus losing winding
number.

Our analytical analysis, and a suitable ansatz for � and
�4, gave a precise criterion for the threshold value kinst of
this instability. Let us define  � ��

4 �4o=�o, and kc, the
maximum k value associated with a nonvanishing con-
densate. Then,

1

k2inst
�

1

 
�

1

k2c
: (8)

We have also studied the chiral and electric cases, and
we were unable to find an instability of this kind, suggest-
ing that these regimes are stable against a ‘‘pinching’’
perturbation. There is, however, another potential insta-
bility particularly relevant in the electric regime.

In the model presented in Eq. (1), the radial loop
equilibrium discussed above in (7) is valid only if one
assumes that the charge and the current remain localized
on the string’s world sheet.When we consider small loops,
especially those tractable numerically, this assumption is
not necessarily valid. Indeed, one can imagine the inter-
action energy as some sort of a potential well for the
condensate. If the loop gets too small, the energy stored in
the rotating the charge carriers, proportional to r�2, may
become larger than this potential barrier, and therefore
the two fields will break apart. Using the usual profiles to
evaluate the interaction energy, we obtain the following
stability criterion (see Ref. [10] for a more detailed analy-
sis):

R
��

*
��
2�

��
�2
o
; (9)

where R is the radius of the vortex loop. Generically, the
right-hand side of (9) is quite large, and so stable loops
require R	 ��. This is a problem for real vortons in the
electric regime. The width of the condensate diverges as
they go deeper into the electric regime, and so these loops
can prove quite hard to stabilize. Numerically, memory
limitations are such that we cannot achieve more than
R
 20��, and thus we are faced with this potential
splitting instability even in the chiral regime, since this
is just the order of magnitude given by (9), as we have
demonstrated in our simulations.

To overcome this difficulty, we have modified the in-
teraction term in Eq. (1), Vint � �j�j2j�j2, by consider-
ing a toy model with Vint � �0j�j6j�j2. Because of the
141601-2
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FIG. 2. Profiles of � and � in the modified Witten model,
plotted in units of �� and ��; the parameters here are �� �
0:5, �� � 1:0, �� � 18:0, �� � 0:35, with the new interaction
parameter �0 � 3:3

FIG. 3 (color online). Vorton simulation, showing j�j (above)
and the real part of �, at t � 0 and t � 1000 (note the uniform
winding of �, meaning a uniform current).
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FIG. 4. Plots of the zeros of � in the transverse plane of an
elliptical chiral vorton: the first four plots show the first period,
and the last two are taken after two and three periods (initially,
% � 0:4).
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higher power of � involved, the effective potential seen
by the condensate is much closer to a square well, which
allows� to build up a higher and more robust condensate,
as can be seen from Fig. 2. This represents only a quanti-
tative, rather than qualitative, modification of the vorton
model with the new criterion for the splitting instability
becoming less stringent. Then, the constraint given by (9)
is relaxed to R=�� & 5, and we can create numerical
configurations in which the condensate and the under-
lying vortex are held together tightly.

Vorton simulations.—The theory defined in the pre-
vious section is ideal for numerical simulations. Our
code evolves the fields according to the full 3D equations
of motion arising from Eq. (1), using a lattice-inspired
Hamiltonian formalism [11] modified from [12]. energy
and charge conservation in all simulations was main-
tained to below 1% accuracy.

First, we study the perfectly circular chiral case. The
initial configuration was obtained using an SOR relaxa-
tion routine to calculate the radial profiles. We then used
the ansatz:

��r; $; �� � j�j�r; $�ei�k��!t�; (10)

which describes a homogeneous chiral vorton. Here, we
have neglected small corrections due to the curvature.

We then let the loop evolve with our code, using
(Dirichlet) reflective boundary conditions which do not
act to stabilize the configuration. We could observe the
loop slowly oscillating around its equilibrium position, in
agreement with the radial analysis we have given (see also
[13–16]). As can be seen in Fig. 3, the whole structure
appears to be remarkably stable.

We now turn our attention to vorton stability with
respect to perturbations in the eccentricity %, by consid-
ering a loop with % < 1. To ensure that the current is
initially homogeneous, we have to consider the modified
ansatz:

��r; $; s� � j�j�r; $�eks�!t ; (11)

where s is the arclength along the string. This arclength is
141601-3
given by an elliptic integral which we evaluate accurately
using the Gauss-Tschebychev algorithm (as can be found
in, e.g., [17]).

Our observations are summarized in Fig. 4, where we
can see clearly that the loop is actually oscillating be-
tween its initial configuration, and another, somewhat
141601-3
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larger loop with higher eccentricity, tilted in the direction
opposite to the current flow. We note also that this behav-
ior satisfies T ’ L, where T is the period of the movement,
and L is the length of the loop.

This can be understood if one considers the effect on
the current of squashing a circular vorton, to make it look
like an ellipse. To the lowest order, the net effect on the
angular momentum of the current is to induce a correc-
tion of the form:

M � M0

�
1�

%2

4

�
: (12)

Thus, the angular momentum of the current is increased
with the eccentricity, and this has to be compensated by a
rotation of the loop in the opposite direction (we discuss
the transfer of momentum at length elsewhere [10]).
Despite the oscillating eccentricity, ultimately these loops
tend to evolve towards more circular configurations, as
can be seen from the last two plots in Fig. 4.

Eccentric loop configurations retained their identity
for more than 10 000 time steps (many light-crossing
times), and so these simulations appear to establish that
stable vortons should form during the evolution of the
Universe. Two small caveats to this conclusion remain.
First, in the very longest simulations of over 30 000 time
steps, the buildup of background radiation (due to the
reflective boundary conditions) causes some friction on
the time-varying current which is eventually driven to-
wards the less stable magnetic regime. We are developing
absorbing boundary conditions for massive radiation to
test the significance of this boundary artifact. Second,
there is the sensitivity of these objects to their initial
conditions, since a slight mismatch in the phase of the
condensate can have dramatic consequences on the sub-
sequent evolution of the loop. This problem is still under
active investigation and will be discussed at greater length
elsewhere.

Conclusions and discussion.—We have presented in this
paper the first simulations of vortons, which appear to
strongly indicate their stability, and hence their cosmo-
logical relevance (as well as in other physical contexts).
Stable vortons may have profound consequences for cos-
mology. These objects can be very massive, and they
could account for dark matter, or even dominate the
universe [18,19]. They are naturally associated with
very high energies, and this makes them prime candidates
for high-energy astrophysical puzzles, such as cosmic
rays [20] or gamma ray bursts [21]. Further study is
required to test these hypotheses, but there can be little
doubt that a deeper understanding of the microphysics of
superconducting strings will further the confrontation
between vortons and observations.
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