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We present a maximum likelihood argument for the Bennett acceptance ratio method, and derive a
simple formula for the variance of free energy estimates generated using this method. This derivation of
the acceptance ratio method, using a form of logistic regression, a common statistical technique, allows
us to shed additional light on the underlying physical and statistical properties of the method. For
example, we demonstrate that the acceptance ratio method yields the lowest variance for any estimator
of the free energy which is unbiased in the limit of large numbers of measurements.
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Introduction.—Finding the free energy difference be-
tween different states of a physical system is of great
general interest in many scientific fields, including drug
design [1], basic statistics [2], and even nonperturbative
quantum chromodynamics [3]. It is of interest to the
experimental community as well as the theoretical and
computational communities [4]. Recently, there has been
increased interest in determining the uncertainty and bias
in any attempt to extract free energies from a suitable set
of data [2,5-11].

We can separate the calculation of precise and accurate
free energy differences into two nonoverlapping prob-
lems. First, we must generate a number, 7, of statistically
uncorrelated measurements of the system. Second, we
must extract a free energy estimate from these n mea-
surements, along with reliable estimates for the statistical
bias and variances of our estimate. We will assume that we
are already in possession of a set of n uncorrelated mea-
surements of the proper observable for our method, and
address only the statistical issues related to the extraction
of free energy estimates from these measurements.

There are a variety of commonly used methods for
finding the free energy of a physical change in the system.
Many of these can be expressed finding the equilibrium
free energy from nonequilibrium work distributions.
Thermodynamic perturbation theory (TPT) or free en-
ergy perturbation (FEP) estimates free energy differences
by exponentially averaging potential energy differences
between a reference state sampled at equilibrium and a
target state [12]. However, FEP can be seen as a special
case of ““fast growth” [5,6] nonequilibrium exponential
work averaging, as the energy difference is the infinitely
fast adiabatic work of transition between the two states
[13,14]. “Slow growth” thermodynamic integration has
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been shown to have high intrinsic biases and is unreliable
as originally implemented [15,16]. However, the ‘“free
energies” obtained from these simulations are actually
measurements from a nonequilibrium work distribution
and an ensemble of values can therefore also be used to
obtain correct free energies [6]. The rest of this Letter
will focus on the generalized nonequilibrium problem.
Assume there are two different equilibrium states de-
fined on a phase space by energy functions Uy(g) and
U,(g). Let AF be the free energy between these states,
defined as the log of the ratio of the partition functions
associated with Uy(g) and U, (g). We can associate a work
with the process of changing energy functions from U, to
U, or vice versa while the system is maintained in tem-
perature equilibrium with the surroundings. By sampling
initial conditions from equilibrium, we obtain a distribu-
tion in either direction of such work values. For infinitely
fast switching, these distributions are simply of =AU =
*+(U, — U,) canonically sampled from the initial state.
It has long been known that the exponential average of
equilibrium energy differences between two states yields
the free energy difference between the states [12]. More
recently, Jarzynski demonstrated that distribution of non-
equilibrium work values can yield an equilibrium free
energy by taking the exponential average of the set of
nonequilibrium work values [13]. However, the exponen-
tial average of a set of data X = {x,, ..., x,,}, defined as
—(1/B) In{exp(—BX)) (where B = 1/kT), is a statistic
that is both inherently noisy and biased, even if the spread
of the data is only moderately larger than k7. The
results of exponential averaging strongly depend on the
behavior at the tails of the distribution, which, by defini-
tion, are not as well sampled as the rest of the distribution.
Previous studies have explored and demonstrated the

© 2003 The American Physical Society 140601-1



VOLUME 91, NUMBER 14

PHYSICAL REVIEW LETTERS

week ending
3 OCTOBER 2003

poor behavior of exponential averaging for small sample
sizes [7-10].

In an examination of free energy estimation between
two states sampled at equilibrium, Bennett [17] demon-
strated that it is possible to use the information con-
tained in both the forward and reverse distributions of the
potential energy difference together in a manner which
was significantly better than estimates using only energy
difference data in one direction. This derivation can
trivially be generalized to the nonequilibrium work
case, replacing AU with the nonequilibrium work [14].
Bennett, in the FEP case, and Crooks, in the general case,
showed that the equation:

W) e

xp(=BAF) = o = AWn

ey

is true for any function f(W), where we define the mea-
surement from the initial state to the final state as the
“forward” direction (denoted by the subscript F) and
the measurement from the final state to the initial state
as the “reverse” direction (denoted by the subscript R).

Bennett then minimized the statistical variance with
respect to this function f(W) to find that f(W) =[1 +
ng/ngexp(B(W — AF)]”! minimizes the variance in this
free energy estimate, where ny and ny are the number of
simulations in the forward and reverse direction, respec-
tively. The free energy difference AF can easily be found
by iterative methods [17]. Although this method is known
and referenced in the literature, it is strangely seldom
used in practice despite its theoretical advantages.

We have found that it is possible to derive this accep-
tance ratio method motivated by an entirely different
reasoning—the maximum likelihood of the free energy
difference given a set of work measurements. This deri-
vation has theoretical advantages. Maximum likelihood
estimators are particularly well-behaved estimators, as
they can be shown under relatively weak conditions to
be asymptotically efficient, meaning that no other asymp-
totically unbiased estimator can have lower variance [18].
The term “asymptotically unbiased” means that the es-
timate becomes unbiased as the number of measurements
goes to infinity. The acceptance ratio method is therefore
the best asymptotically unbiased estimate possible given
a set of nonequilibrium work values in both directions.

Maximum likelihood estimator derivation—We start
from the fact that [14]:

Pp(W)

ln[PR - } B(W — AF) @)
where Pr(W) and Pgr(W) are probability distributions for
the work of nonequilibrium processes from the two states
in opposing directions. In order to simplify the notation,
and without loss of generality, we will replace the reverse
work distribution with the equivalent distribution formed
by substituting —W for W.
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Equation (2) can be recognized as a specific case of
logistic regression, a common statistical technique usu-
ally used for epidemiological outcome prediction [19],
and we will use several important results from this field in
our derivation. Logistic regression models are solved by
maximum likelihood methods [19,20], which we apply
here. Our specific problem is simplified because the exact
value for S is given as an input to the simulation; we need
only estimate the free energy. One could in principle
estimate both 8 and AF from the two distributions with
logistic regression techniques, though it is unclear at this
point what practical advantage it may have.

The ratio in Eq. (2) can then be written as
P(W|F)/P(W|R) where P(W|F) is the conditional proba-
bility of a work value given that it is a forward measure-
ment and P(W|R) is the conditional probability of a work
value given that it is a reverse measurement. We would
like to compute the likelihood of a free energy estimate of
a given number of work measurements which are speci-
fied as either forward or reverse. Although either P(W|R)
or P(W|F) can be eliminated, we are left with one inde-
pendent continuous free energy distribution, and writing
either P(W|F) or P(W|R) in a closed form is system
dependent. Although the problem can be solved by finding
the likelihood over the this continuous distribution with-
out the need for a closed form [21,22], it is possible to
rewrite this problem in a much more tractable way.

Using the rules of conditional probabilities, and the fact
that P(F|W) + P(R|W) = 1, we rewrite this probability
distribution as follows:

P(W|F) _ P(FIW)P(R) _  P(FIW) P(R)
P(WIR) P(RIW)P(F) 1—P(FIW)P(F)
We note that P(R)/P(F) = ng/np, where ny and ng are
the number of forward and reverse measurements, respec-
tively. We define the constant M = kT In(np/ng) and re-
write Eq. (2) as
P(F|W)
1 — P(F|W)

3

In = B(M + W — AF). 4)

Given Eq. (4) and an estimate for AF, we can rewrite the
probability of a single measurement P(F|W;) as

1

PEW) = ool ga ~w, —ap] O
Similarly,
1
P(RIW;) = (6)

1 +exp[B(M + W, — AF)]

We now have expressions for the probabilities P(F|W;)
and P(R|W;) given a value of the free energy AF without
introducing any additional parameters and eliminating
the need to parametrize a continuous distribution. We
can then estimate the free energy that would maximize
the likelihood of having found the specified distribution
of forward and reverse values of W.
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Given a value for the free energy AF, the overall likelihood L of obtaining the given measurements can be expressed
as a joint probability of obtaining the forward measurements of work at the specified work values times the joint
probability of obtaining the reverse measurements at the specified work values:

LAF) = [[PEW) [ PRIW)).
i=1 =1

)

The most likely value of AF is the value that maximizes the likelihood, but it is usually easier to solve the equivalent
problem of maximizing the log likelihood. Taking first the log of the likelihood and then taking the derivative with

respect to AF and setting it equal to zero we obtain:

ng 1

dInL(AF) _ Z 1
dAF =
The left side of Eq. (8) is a strictly increasing function in
AF, and has limits of —ngp as AF — —oo and nyp as
AF — o0, s0 we are guaranteed that AF has one unique
root. This value of the free energy difference AF is the
maximum likelihood estimate (MLE) of the measured
data. This is the likelihood with a fixed probability for
forward and reverse measurements obtained from the
ratio P(F|W)/P(R|W), not a fixed number of each type
of measurement, obtained from the ratio P(W|F)/
P(W|R). However, it has been shown that these two
approaches to logistic regression yield the same values
for the parameter or parameters being estimated [21,22].
Equation (8) is exactly equivalent to the Bennett ac-
ceptance ratio method, as can be seen by comparison to
Egs. 12(a) and 12(b) of Bennett’s paper describing the
method [17]. In other words, the Bennett acceptance ratio
yields the free energy which, given a series of work
measurements in the forward and reverse direction, maxi-
mizes the chance these work values would be observed.

As mentioned before, the MLE is an asymptotically
efficient estimator if certain weak conditions are met.
These conditions are that there exists a unique root in
the likelihood equation for every n, and that the third
derivative with respect to the parameter (here, the free
energy AF) is bounded [18]. These conditions are satisfied
in this case.

Variance estimates from maximum likelihood meth-
ods.—The variance of the MLE of a parameter
0 asymptotically converges to 1/1(6) as n — co, where
1(6) is the Fisher information of the joint distribution of
the work values with respect to the parameter 6 [18]. The
Fisher information is defined as the negative of the ex-
pectation value of the second derivative of the log like-
lihood with respect to the parameter 6 [18]. In our case,
the parameter is AF, the free energy difference, and the
estimate of the Fisher information given finite sampling
is

B 1
IaF) = 2(2 1 + cosh[B(M + W, — AF)] ) ©)

=Nt

where this sum goes over both the forward and reverse
work measurements.
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1+ exp[B(M + W, — AF)] P exp[—B(M + W, — AF)]

0. (8)
j=1

| However, this leads to a variance estimate for a fixed
probability of forward and reverse simulations, not a fixed
number of simulations in the forward and reverse direc-
tion, including evaluations of free energy over the cases
that np is not the specified number. We must include this
restriction in order to obtain the correct variance for the
maximum likelihood estimate for the fixed number case.
Anderson showed that this difference can be compen-
sated for by subtracting 1/ny + 1/ny from the variance
[21], yielding:

,8211[0[ |:<2 + ZCosh[B(I;I + W, — AF)] >l
()]

where the average in the above equations is over all work
measurements, both forward and reverse. Anderson’s
derivation is rather technical, and we provide an alternate
derivation as supplementary materials specific to this
case [23]. Comparing the methods obtained by the
maximum likelihood and Bennett’s original variance
calculation, we find that Eq. (10) can be identified with
Eg. 10(b) in Ref. [17], by recognizing that p,/p, is
simply equal to the factor exp[ B(W — AF)].

Although we know that the MLE is asymptotically
unbiased, we still need some sense of the bias for finite
numbers of measurements. Typically, the bias of a MLE is
proportional to n~! [20]. Since the standard error is
proportional to n~'/2, in general the statistical bias
will not be significant with the respect to the statistical
uncertainty.

Discussion.—There are strong connections between the
acceptance ratio method and exponential averaging. In the
limit that np > ng, Eq. (8) becomes

> R exp[—B(W, — AF)] = 3 1 =0,
nr

i=ng

(10)

i=ng

nelexpl = BOW — AF)Dy = ng (b
{exp(—=BW))r = exp(—BAF).
Assuming that ngz > np, we similarly find that

(exp(BW))gr = exp(BAF), thus recovering the well-
known fact that the free energy is the expectation value
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of the exponential average of either the forward or the
reverse distribution. Thus, one can interpret the exponen-
tial average as the maximum likelihood estimator for the
free energy difference in the limit that samples are drawn
from only one distribution. No other asymptotically un-
biased estimate that draws from only one distribution can
have a lower variance.

However, in an analysis of the computational efficiency
of the acceptance ratio method as the ratio np/ng is
varied, Bennett showed that the optimally efficient ratio
was always relatively close to 1 [17]. The limits of np >
nrp and np > ng are significantly less efficient, some-
times by 3 or 4 orders of magnitude. Essentially, there is
only one independent distribution, as the forward and
reverse distributions are related by Eq. (2). Above AF,
the forward distribution will be more statistically accu-
rate in estimating this independent distribution, and be-
low AF, the reverse distribution will be the most
statistically accurate. It will therefore always be better
to partition the available simulations or experiments be-
tween both directions rather than explore the distribution
of work values in one direction for twice as long. The
acceptance ratio method will therefore always be prefer-
able to FEP. We note that if FEP is performed in both the
forward and reverse directions, as is typically the case,
then the exact same data can be instead used in the
acceptance ratio method.

The fact that the MLE is the asymptotically unbiased
estimator with the minimum variance does not neces-
sarily guarantee that is the best estimator by all measures.
It is sometimes possible to find an estimator that is
asymptotically biased, but has significantly smaller vari-
ance, resulting in a smaller mean squared error for a finite
number of measurements. Preliminary evidence we have
obtained indicates, for example, that the probability dis-
tributions Px(W) and Pr(W) can be smoothed by such
methods as convolution with a kernel to obtain mean
squared errors similar to or smaller than acceptance ratio
estimates in some cases.

Conclusions.—We have demonstrated that the Bennett
acceptance ratio method can be interpreted in terms of the
maximum likelihood estimate of the free energy differ-
ence given a set of nonequilibrium work values in the
forward and reverse directions. This extends Bennett’s
work by showing that the acceptance ratio method is the
minimum variance asymptotically unbiased estimate. We
have also derived an expression for the variance of the
Bennett acceptance ratio method using the same methods.
We note use of the Bennett acceptance ratio will always
yield lower variance than exponential averaging. We also
note that the conclusions presented in this Letter are valid
for the general case of work distributions from an initial
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state to a final state, not only the specific case of energy
differences from an equilibrium state to another state.
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