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Unstable Trigger Waves InduceVarious Intricate Dynamic Regimes in a Reaction-Diffusion
System of Blood Clotting
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In this work we demonstrate that the unstable trigger waves, connecting stable and unstable spatially
uniform steady states, can create intricate dynamic regimes in one-dimensional three-component
reaction-diffusion model describing blood clotting. Among the most interesting regimes are the
composite and replicating waves running at a constant velocity. The front part of the running composite
wave remains constant, while its rear part oscillates in a complex manner. The rear part of the running
replicating wave periodically gives rise to new daughter waves, which propagate in the direction
opposite the parent wave. The domain of these intricate regimes in parameter space lies in the region of
monostability near the region of bistability.
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distance. This is critically important for normal clotting
because the clot must remain localized at the site of

K2 and K6, which describe the generation of the activator
and the inactivation of the inhibitor, respectively, were
One of the well known solutions of one-dimensional
reaction-diffusion models is a trigger wave. It is found in
the models describing the bistable media with two stable
spatially uniform steady states separated by the unstable
spatially uniform steady state. A trigger wave propagates
without changing its shape at a constant velocity switch-
ing medium between two stable states, called upper and
lower states. The parameter values of the model deter-
mine whether the medium is switched from the lower into
the upper state (the on wave), or from the upper into the
lower state (the off wave). The on and off waves can
coexist for certain parameter values and could be trig-
gered by setting appropriate initial conditions [1]. In some
models one of the stable steady states can lose its stability
and continue to exist as an unstable state. Such models,
with one stable and two unstable homogeneous steady
states, can have solutions in the form of the unstable
trigger waves connecting the stable and unstable steady
states. In the Gray-Scott (GS) model the trigger waves of
this kind can induce spatiotemporal chaos in the region of
finite size [2]. While studying the reaction-diffusion
model (1), originally constructed to describe blood clot-
ting, we found that the unstable trigger wave can give rise
not only to the chaotic behavior but also to the replicating
waves as well as to the spatially localized waves, with a
complicated waveform.

The biochemical pathway of blood clotting consists of
the enzymatic cascade with several positive and negative
feedbacks. This pathway cannot be described by the tradi-
tional model of active medium containing two variables:
the activator and the inhibitor. The results of our previous
studies led us to propose that blood should be viewed as
active medium of a special kind [3,4]. The unique feature
of this medium is that a self-sustained thrombin wave,
which forms a solid fibrin clot, travels over a finite
0031-9007=03=91(13)=138301(4)$20.00 
injury. Normally, in other active media self-sustained
waves propagate with a constant speed and amplitude
up to the boundaries. To describe the blood clotting path-
way we used the system of eleven equations [5,6]. When
reduced, it led to a three-component set of equations (1)
of the reaction-diffusion type [7], which we called the
blood clotting (BC) model:
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It contains three key variables that correspond to the
concentrations of some proteins involved in blood clot-
ting, and by analogy with traditional models can be
called the activator (u1) and the inhibitor (u3), while u2
is a new variable —the catalyst of the u1 production. The
chemical part of model (1) contains six parameters
K1–K6. Model analysis has revealed that it exhibits sev-
eral new regimes, which have not been observed in the
reaction-diffusion systems seen thus far. Such regimes
are likely to exist in various complex systems and, there-
fore, may be of interest to the researchers studying differ-
ent active media.

For the numerical analysis of model (1) we replaced the
partial differential equations with the difference equa-
tions and integrated them over a segment 0 � x � L for
fixed values of four parameters (K1 � 6:85; K3 �
2:36; K4 � 0:1; K5 � 14) and of the diffusion coefficient
(D � 1), with no-flux boundary conditions using a simple
explicit finite difference scheme with spatial step h �
0:25 and temporal step � � 0:01. Only two parameters,
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varied. These two parameters are the key determinants
of the model dynamics because their variations allow
obtaining all major characteristic regimes. The diffusion
coefficients for all variables are assumed to be equal
because the molecular weights of the enzymes corre-
sponding to the main model variables are similar. The
variations of the diffusion coefficients (up to 10%) in
all three equations have shown that the observed
dynamic modes continue to exist, but at slightly different
parameters.

Figure 1 shows the results of mapping various regimes
in the (K2; K6) parameter plane of Eqs. (1). Domain I is
the region of spatially localized constant-amplitude
pulses running at a constant velocity (autowaves, hori-
zontal hatching). Domain II is the region of pulses run-
ning with periodically oscillating amplitude (oscillating
autowaves). The value of the pulse’s velocity is approxi-
mately constant. Standing spatially localized structures
(peaks) are observed in domains III (vertical hatching)
and IV. The peaks remain still in domain III but oscillate
in domain IV. Domain V is the region of bistability,
in which the solutions are in the form of the trigger
waves. The large domain VI is the region of complex
dynamic modes induced by the unstable on waves.
Stable modes I–V are also known in other models of
active media [1,8–11]. Therefore we focus on the results
of detail examination of the intricate dynamic modes
detected in domain VI.

To analyze solutions in the form of stationary waves
moving with constant velocity c, we solved the ordinary
differential equations derived from Eqs. (1) for the coor-
dinate system moving with velocity c. By switching to
the moving coordinate system we found in domain VI
solutions in the form of unstable on waves. They connect
the lower stable [trivial �0; 0; 0�] and the upper unstable
spatially uniform steady states.

In subdomain VIa we distinguish two types of waves,
both of which we call the composite waves. The waves of
type I are found throughout subdomain VIa excluding the
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FIG. 1. Regions of the stable regimes in the (K2; K6) parame-
ter plane (see text for details).
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narrow zone at its bottom. This wave propagates from the
site of activation at the boundary [Fig. 2(a)] [12]. The
front part of the wave remains unchanged and runs at a
constant velocity, whereas its rear part oscillates aper-
iodically in a complex manner. Initially, the rear part
propagates slower than the front part, leading to the
wave broadening, but later the broadening stops. In the
coordinate system moving with the velocity of the lead-
ing wave, the total width of the leading wave oscillates
around some average value. The farther the parameter
points in the (K2; K6) plane from the domain of bistabil-
ity, the narrower the width of the leading wave. The front
part of the leading wave and its velocity [Fig. 2(a)]
accurately coincide with the characteristics of unstable
trigger on waves calculated for the same parameters [see
Fig. 2(b)]. The pulses arising behind the leading wave of
type I tend to develop into the secondary waves that are
similar to the parent wave. The secondary waves propa-
gate in the opposite direction and give birth to the tertiary
waves, and so on. The arising numerous waves can either
annihilate or fuse together. The fusion sites become the
FIG. 2. Formation of the type I composite wave with the
aperiodically oscillating rear part in response to a local rise
in activator concentration at the end of the segment for K2 �
8:15 and K6 � 0:075: (a) Time series of the profiles for the
activator. (b) Profile of the unstable trigger on wave shown
along with the profile of the composite wave shown in (a) at
t � 3000. (c) Snapshots of the dynamic pictures at indicated
times. (d) Oscillations of the first variable in the center of the
segment. (e) The example of the power spectrum for oscilla-
tions of activator concentration in the center of the segment.
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foci for the birth of the new waves. On reaching the
segment boundary the leading wave breaks down, result-
ing in the dynamic picture, which varies continuously in
a complex manner. The interacting waves fill up the entire
region [see Fig. 2(c); t � 10 000; 50 000) and give rise to
oscillations of the variables in each point of space
[Fig. 2(d)]. These oscillations have a broadband power
spectrum [Fig. 2(e)], suggesting that their behavior is
chaotic. This suggestion agrees well with the finding
that at large times this dynamic regime is sensitive to
perturbations imposed on the system: when we compared
evolution of the temporal patterns of two equivalent
systems we found that a minor initial perturbation in
one of the systems resulted in their local exponential
divergence with the largest Lyapunov exponent � 5 (not
shown).

The model analysis has also revealed the existence of
the second type of composite wave [12], which is pro-
duced by the unstable trigger wave in a narrow zone at the
bottom of subdomain VIa [Fig. 3(a)]. As for the type I
wave, the front part of the type II wave remains un-
FIG. 3. Formation of the type II composite wave with the
periodically oscillating rear part in response to a local rise in
the activator concentration at the end of the segment for K2 �
7:6 and K6 � 0:075. (a) Time series of the profiles for the
activator u1 variable. (b) Profiles of the unstable trigger waves
shown along with the profiles of the composite wave shown in
(a) at t � 300.
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changed and coincides very accurately with the front
part of the unstable on wave [Fig. 3(b)]. But, unlike the
type I waves, the rear part of type II waves oscillates
periodically. Since both types of waves contain two parts,
the constant front part and the oscillating (periodically or
aperiodically) rear part, we collectively call them the
composite waves.

Figure 4(a) shows the regime, which is observed in
subdomain VIb [12] and appears to be different from the
composite waves. The secondary (daughter) wave is born
in the rear part of the propagating parent wave.
Gradually, it grows into a wave identical to the parent
wave but running in the opposite direction. The parent
wave gives birth to the new wave repeatedly, and its
replica daughter waves also replicate themselves regu-
larly.When two replicating waves collide, they annihilate
each other [Fig. 4(b); compare t � 1430 and t � 1500] if
they are well developed and run with only slightly vary-
ing profiles. However, if one of the two colliding waves is
less well developed than the other, they merge and form a
new wave of the parent type [Fig. 4(b); compare t � 820
and t � 920]. If both colliding waves are not well devel-
oped, they merge and form two waves moving in opposite
directions [Fig. 4(b); compare t � 1160 and t � 1250).
Gradually, the traveling replicating waves fill up the
entire segment, causing the chaotic changes in variables
at every point in space [the example of the power spec-
trum for oscillations in the center of the segment is shown
in Fig. 4(c)]. As for the composite waves, the front part
and the velocity of the replicating waves are very similar
FIG. 4. Replicating waves in domain VIb for K2 � 6:0 and
K6 � 0:077. (a) Time series of the profiles for the activator u1.
(b) Snapshots of the replication dynamics at different times.
(c) The example of the power spectrum for oscillations of
activator concentration in the center of the segment.
(d) Profiles of the unstable trigger waves shown along with
the profiles of the replicating wave shown in (a) at t � 830.
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to those of the unstable on waves calculated for the same
parameter values [see Fig. 4(d)].

It is noteworthy that the front part of the unstable
trigger wave connecting the stable lower and the unstable
upper spatially uniform steady states in the model (1) can
be viewed as an essential component of the described
dynamic regimes, and the front parts and velocities of
the composite and replicating waves coincide very accu-
rately with those of the unstable trigger waves. In other
words, the unstable trigger waves can manifest them-
selves in direct simulations of the model (1) in the form
of different dynamic regimes: they induce chaos at some
parameters, give birth to replication dynamics at others,
or they may exist in the form of spatially localized waves.

The trigger waves as part of spatiotemporal chaotic
profiles were previously observed by other researchers in
the GS model [2] and the model of catalytic CO oxidation
on the platinum [13]. The same type of chaos we have
found in the BC model (1) in the case of composite waves
of the first type. In several models of active media were
described self-replicating pulses with different dynamic
behaviors (see [14,15] for classification). Replicating
standing and propagating pulses were found in the GS
model [16]; complicated replication of the oscillating
pulses was observed in the Prague model [15]. Repli-
cation of breathing pulses was described in the
Bonhoffer–van der Pol model [14]. Although the number
of such examples is growing, the bifurcation mechanisms
responsible for the self-replicating behavior remain
poorly understood. In the so far best studied GS model,
the replication dynamics is viewed as a transient process,
which takes place near the hierarchically organized
structure of fold bifurcations of multipulse solutions
[16]. By examining the dynamic regimes arising in the
BC model (1) we have established another bifurcation
mechanism that causes replicating waves. The replicating
waves in the BC model are the front parts of unstable
trigger waves existing at these parameters. Since self-
replicating dynamic regimes have also been observed in
other models, it would be interesting to examine whether
a similar bifurcation mechanism is also responsible for
their dynamic properties.

Since model (1) has been obtained by reducing the full
model of the blood clotting pathway, the uncovered dy-
namic regimes, in addition to their theoretical value, bear
direct consequence in predicting various anomalies in
blood clotting. These predictions can be tested in a re-
cently developed experimental system for the in vitro
study of the dynamics of blood clotting [17]. In order to
observe the predicted regimes, the system parameters
have to be changed so that the system is shifted close to
the region of bistability. This boundary can be reached by
increasing the value of either parameter K2 or K6. They
correspond to the combinations of the reaction constants
138301-4
and concentrations of the precursors of blood clotting
factors [7]. Therefore, K2 and K6 can be varied experi-
mentally by changing the precursor’s concentrations. We
hope that such studies will help to shed light on the origin
and treatment of different blood clotting pathologies,
including the disseminated intravascular coagulation
(DIC) syndrome.
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