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Ballistic Diffusion Induced by a Thermal Broadband Noise
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We present a thermal broadband noise from the difference between two Ornstein-Uhlenbeck noises,
which can induce a ballistic diffusion, i.e., long-time mean square displacement of a free particle driven
by this noise reads hx2�t�i / t2. We apply this noise to a flashing ratchet and the mean velocity of the
particle is calculated via Langevin simulation. The results show that a double peak of the mean velocity
and flux reversal appears for the ratchet with large and small asymmetries, respectively; the inertia
effect induces a large mean velocity and multireversal of flux. These rich and interesting phenomena are
explained.
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Langevin equations (MLE) transformed from the origi-
nal NMLE. The directed motion of the particle shows

Alternatively, one can use a red noise to excite a series
circuit or resistance and capacitance, and then the noise
In recent years, growing attention has been paid to
the processes that take place in disordered media and
other systems which show anomalous diffusive behaviors
[1]. One of dynamical origin of the anomalous diffu-
sion is due to nonlocality in time and thus the velocity
of the particle shows a memory effect, resulting in a non-
Markonian Langevin equation (NMLE) [2–4]. Morgado
et al. [5] modified the spectral density of the thermal
bath by removing the low-frequency part of the acoustic
modes, leading to a strong superdiffusion, i.e., the
mean square displacement of a particle in the force-free
case can reach as hx2�t�i / t1:98�0:01. Superdiffusion
(hx2�t�i / t� with 1<�< 2) has been observed in a num-
ber of systems [6] ranging from early discoveries in
intermittent chaotic systems, fluid particles in fully de-
veloped turbulence and to millennial climate changes.
Unfortunately, only a speculative fractal spectrum, i.e.,
non-Ohmic friction, was used frequently to discuss
anomalous diffusion caused by nonlocality in time, there
lacks a practical example of a thermal noise-induced
superdiffusion. For instance, it has not been found that
the thermal harmonic noise can induce the superdiffusive
behaviors. Moreover, the operational mechanisms of mo-
lecular motors and the particle separation have been
studied extensively and our knowledge about the mode
of operation of molecular motors has greatly improved
since the first ratchet models [7]. However, how super-
diffusion helps directed transport remains as an open
question [8].

In this Letter, we present a thermal broadband noise
leading to the ballistic diffusion (i.e., hx2�t�i / t2 in the
case of both force-free and long-time limit) and study the
operation of a periodically flashing sawtooth ratchet sub-
jected to such noise. The mean velocity of the particle is
calculated via numerical simulation of a set of Markovian
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some novel behaviors compared with that of the previous
results based on white and other colored noises.

The NMLE for the motion of a particle in a potential
U reads

m �xx�t� �m
Z t

0
��t� t0� _xx�t0�dt0 �U0�x� 
 "�t� � E�x; t�;

(1)

where ��t� is the friction memory kernel, "�t� is a thermal
colored noise that we assume to be zero centered, sta-
tionary, and its correlation function obeys the fluctuation-
dissipation theorem: h"�t�"�t0�i 
 kBT��jt� t0j�, where
kB is the Boltzmann constant, T is the absolute tempera-
ture of the environment, and E�x; t� is a multiplicative
noise.

As a practical example, we report a thermal or internal
broadband colored noise, which allows a coverage from
‘‘red’’ noise to ‘‘green’’ noise [9,10] associated with a
memory kernel as
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with A 
 �0�
2
1=��

2
1 � �22�, where �1 and �2 are two cor-

relation times, �0 is the friction coefficient. According to
the Wienerr-Khintchine theorem, the spectral density of
noise is the Fourier transformation of the correlation
function of noise,
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2
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2�
: (3)

Indeed, this noise can be realized from the difference
between two Ornstein-Uhlenbeck noises (OUN) with
different time constants driven by the same white noise.
2003 The American Physical Society 138104-1



P H Y S I C A L R E V I E W L E T T E R S week ending
26 SEPTEMBER 2003VOLUME 91, NUMBER 13
needed is finally obtained from the voltage of the resis-
tance. Thus the present broadband noise is also a second-
order colored noise. Note that the low-frequency part of
this noise has been removed [S�0� 
 0] and the spectrum
(3) shows a band-passing behavior. This implies that the
effective friction is vanishing in long-time limit, i.e.,
limt!1

R
t
0 ��t� t0�dt0 
 0. This is why one can expect

the ballistic behavior to emerge.
We first consider a case that both potential trapezoid

and external driving are absent, thus the solution of
NMLE (1) can be obtained by means of the Laplace
transform technique,

x�t� 
 x0 � v0H�t� �
Z t

0
H�t� t0�"�t0�dt0; (4)

where x0 and v0 are the initial position and velocity of the
particle. The response function H�t� is the inverse form of
the Laplace transform ĤH�s� 
 �s2 � s�̂��s���1, where
�̂��s� 


R
1
0 ��t� exp��st�dt is the Laplace transformation

of the friction memory kernel (2), we have

ĤH�s� 

�1� s�1��1� s�2�

s2f�0�21=���1 � �2�� �1� s�1��1� s�2��g
: (5)

Applying the residue theorem, we obtain the response
function H�t� and then the mean square displacement is
yielded as

hx2�t�ifree 
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where DN 
 ��1 � �2�a2=�1�a�3, DS 
 a=�1� a�2, a 

�0�21=��1 � �2�, and the time decay term has the form
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(7)

where �1 and �2 are the roots of the equation s2 �
��1 � �2���1�2��1s��1� a���1�2��1 
 0; both real parts
of the two roots are negative. When �1 ! 1, DS 
 0, and
DN 
 ��1

0 , the present process becomes an OUN process
with corresponding memory kernel. Moreover, if �2 ! 0
this will reduce to the regular Brownian motion.

It is worth pointing out that the noise introduced
here differs from the harmonic noise [11]; the latter is a
narrow-band noise and also called a quasimonochromatic
noise, its high-frequency part of the spectrum is declined
and low-frequency part does not vanish. Moreover,
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the fractal noise proposed by Jung [12], in particular, is
an overdamped harmonic noise. For the thermal har-
monic noise, the friction kernel is ��t� 
 ��2�0=�� �
exp���t=2��cos!1t� ��=2!1� sin!1t� [11], where !2

1 

��2=4��2�, � and � are the frequency and damp-
ing of the oscillator, respectively. Thus the Laplace
transformation of the response function in the force-
free case is given by ĤH�s�
 s�1fs���2�0=���s���=
�!2

1��s��=2�2�g�1, which will lead to limt!1hx
2�t�i/ t.

Namely, both the harmonic noise and the fractal noise
cannot give rise to superdiffusion, because the Laplace
transformations of their response functions have no
double zero roots as compared to the case of the broad-
band noise proposed in this Letter.

We now transform the NMLE (1) by describing a
particle moving in a flashing ratchet [13,14] [i.e.,
E�x; t� 
 �1� z�t��U0�x� in Eq. (1)] into a set of the
MLE with four variables as
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(8)

where ��t� is a white noise with h��t�i 
 0, h��t���t0�i 

2D �t� t0�, and D 
 �0kBT��1=��1 � �2��2; z�t� takes
two values 0 and 1, as it is a periodical dichotomous
process, the particle experiences the potential off dur-
ing the waiting times toff and the potential on during
ton, we have

z�t� 

�
0; ntp < t < ntp � toff ;
1; ntp � toff < t < �n� 1�tp;

(9)

where tp 
 toff � ton.
In Fig. 1, we plot the numerical results of the mean

square displacement hx2�t�i in the force-free case by
means of Eq. (8) with U0 
 0. The error of the present
algorithm related to theoretical data [Eq. (6)] is less than
1%. It is seen that hx2�t�i is proportional to t2 in the long-
time limit, namely, the ballistic diffusion is observed
when the noise is in the region of green noise for
small-�2 and finite-�1.

Now we apply the proposed thermal broadband noise to
a periodically flashing ratchet model. Although this is a
very simple model which is not enough for describing the
operation of the real molecular motor, it is very tutorial
and intuitive. The flashing ratchet with a normal velocity-
memory has been studied in Ref. [15]. The ratchet poten-
tial is chosen to be a simple sawtooth one,

U�x� 


8<
:

U0

�1�#�$ x; k$ � x � �k� 1� #�$;
U0

#$ �$� x�; �k� 1� #�$ � x � �k� 1�$;

where U0 is the barrier height, while # and $ denote the
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FIG. 1. The mean square displacement of a free particle vs
time for various �1 and �2 at the temperature kBT 
 1:0. The
solid lines and open circles are theoretical and numerical
results, respectively.
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asymmetric parameter and the periodic length of the
ratchet potential. For ratchet model, we rescale the posi-
tion and time [16], and thus the new dimensionless dy-
namics can be obtained; here the rescaled mass and
noise parameters becomes dimensionless variables. The
probability current J is related to the mean velocity hvi
in the stationary state: J 
 hvi=$. The steady mean
velocity of the particle is evaluated numerically by
hvi 
 �hx�t�i � x�0��=t.

In Fig. 2, we plot the mean velocity as a function of the
half cycle period tp=2 for two kinds of asymmetrical
parameters # 
 0:6 and # 
 0:9, here and below we
have chosen toff 
 ton 
 tp=2. The behavior of the mean
velocity is under the influence of a cooperation and com-
petition between two nonequilibrium processes: diffusion
and mobility. A particle is easily diffused at least a short
distance but not a long distance while the potential is off;
and the particle moves along the sawtooth sides when the
potential is on according to the generalized Einstein
FIG. 2. Mean velocity hvi as a function of the half cycle
period tp=2 for various #. The solid and dashed lines are the
results of ballistic and normal diffusions, respectively. The
parameters used are �1 
 0:5, �2 
 0:05, and kBT 
 0:01.
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relation hx�t�iF0

 F0hx

2�t�ifree=�2kBT�, where F0 are two
slopes of the ratchet potential. Now if the asymmetry of
the ratchet is large, freely diffusive particle can reach the
position of the nearest barrier during a short period,
however, there is a small possibility for the particle
arriving at the position of the further barrier, thus the
difference between the forward Pf and backward Pb
probabilities can become maximum for a short period
of the cycle time, and accordingly the first peak of the
mean velocity is observed. With the increase of the cycle
time period, the net probability for the drift decreases,
but when the particle has enough time to descend to the
bottom of a well from the top along the longer side of
the potential while the potential is reconverted, thus the
particle can move directly a long distance after a cycle
period, this leads to the appearance of the second peak. If
the asymmetry of the ratchet decreases, the particles will
descend first to the bottom of a well along the longer side
after they diffuse freely to the farther barrier while the
potential is off, so it is possible that the velocity due to the
mobility exceeds over that due to the diffusion, leading to
the mean velocity become negative. Moreover, the maxi-
mum of the mean velocity driven by a thermal white noise
appears in a long cycle period, because in the normal
diffusion case the variance of the distribution changes
very little, thus the particle needs a long time to reach the
nearest barrier.

The finite inertia causes the complex behaviors of the
directed motion as shown in Figs. 3(a) and 3(b). A global
maximum with respect to both m and tp appears for finite
mass [Fig. 3(a)]. Thereby, a novel unexpected feature is
found that for small mass the first positive maximum of
the mean velocity with respect to tp=2 appears in the
region of the small values of tp=2, while the second
positive peak shifts toward the large value of tp=2 when
the inertial mass increases. A second novel feature is that
a negative velocity appears for moderate tp. First, for
moderate values of m we have found a double reversal
of the velocity direction for increasing values of the cycle
period [Fig. 3(b)]. For larger m the flux exhibits a single
reversal and it remained positive for very large tp=2. Both
diffusion and mobility have a stronger or weaker effect in
small or larger mass, respectively, thus the mobility along
the two smooth sides of the ratchet potential exceeds the
free diffusion at a moderate m. However, all the above
behaviors do not occur in the case of normal flashing
ratchet, although a double reversal of the velocity has
been observed in the inertia correlation ratchet [16].

In summary, we have proposed and realized a thermal
band-passing noise which can lead to a strong superdif-
fusion, i.e., ballistic diffusion. Indeed, there does not exist
the superdiffusive behavior for any other second-order
colored noise sources, such as the harmonic noise and
the fractal noise. For a flashing ratchet subjected to this
noise, the mean velocity of the particle shows rich behav-
iors in comparison with the normal case. There exists a
138104-3



FIG. 3. Mean velocity hvi vs the half cycle period tp=2 for various rescaled mass m. The parameters used are �1 
 0:5, �2 
 0:05,
# 
 0:9, and kBT 
 0:001. (a) Small-m case for ballistic diffusion; (b) Large-m case, solid and dashed lines are the results of
ballistic and normal diffusions.

P H Y S I C A L R E V I E W L E T T E R S week ending
26 SEPTEMBER 2003VOLUME 91, NUMBER 13
double peak and reversal for the mean velocity, this is due
to the combined effects of the ballistic diffusion in the
potential off and the mobility in the potential on to play
the important roles at different time scales, respectively.
The maximum of the mean velocity in this superdiffusion
case is much larger than that in the normal diffusion. We
also demonstrate that the finite inertia enhances the mean
velocity for this transport and there exists a flux reversal
in the underdamped case. Thus an anomalous Brownian
motor in the presence of ballistic diffusion proposed in
this work can produce considerably large output work.

It is expected that the ballistic diffusion might become
a useful operational mechanism to achieve a high effi-
ciency for the molecular motors and other systems in
addition to what have been discussed in Ref. [17]. We
believe that the transport produced by the broadband
noise can be applied to various problems in the future.
Moreover, we conjecture that the superdiffusion with an
exponent 1<�< 2 can be obtained from the difference
between two fractional Ornstein-Uhlenbeck noises, or, a
white noise minus a fractional OUN, the latter is the
solution of a linear Riemann-Liouville fractional differ-
ential equation driven by a Gaussian white noise [18]; as
well as a double-band-passing noise from the difference
between two harmonic noises driven by the same white
noise can also be obtained along the line of the present
work. This requires one to study further.
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