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Electrofriction and Dynamic Stern Layers at Planar Charged Surfaces
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Using dynamic simulations, the electrophoretic mobility of counterions at a substrate with fixed or
mobile surface charges under the action of a lateral electric field is studied. The lateral charge
inhomogeneity and corrugation of the substrate is taken into account. Because of the pronounced
electrofriction between counterions and surface ions, a large fraction of counterions is practically
immobilized for highly charged substrates. This explains the experimentally observed saturation of the
electrophoretic mobility of charged particles in the limit of high surface charge density.
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FIG. 1. In the simulations, a two-dimensional layer of surface
ions (which can be mobile or fixed) is in contact with oppositely
charged counterions of the same diameter a and valency q. The
the surface of shear (where the solvent stagnates) is fairly electric field acts laterally.
Charged surfaces are neutralized by a diffuse cloud of
oppositely charged ions which extends a certain distance
into the aqueous half-space. Electrokinetic methods give
useful information on the structure of this electric double
layer [1,2]. When a charged macroscopic particle is sub-
jected to an electric field, it migrates at constant speed;
this process is called electrophoresis. If, on the other
hand, the particle is held fixed, the diffuse counterion
layer will move and thereby drag the solvent along; this
process is called electro-osmosis. A simple description
is possible for a planar charged substrate with a tangen-
tial electric field E along the x direction (see Fig. 1).
The Stokes equation (valid for small Reynolds numbers,
i.e., small particles and moderate velocities [2]) describes
the stationary solvent velocity vx along x as a func-
tion of the distance z from the substrate as �d2vx�z�=
dz2 � ��e�z�E, where � is the solvent viscosity and �e is
the local charge density in the solvent. Inserting the
Poisson equation leads to �d2vx�z�=dz

2 � "Ed2 �z�=
dz2, where " is the dielectric constant and is the electro-
static potential. Integrating twice, one finally obtains the
celebrated Helmholtz-Smoluchowski (HS) equation,
�vx�1� � �"E s, which relates the solvent flow far
away from the substrate, vx�1�, to the so-called Zeta
potential,  s �  �zs�, i.e., the electrostatic potential at
the surface of shear zs up to which the fluid stays at rest.
Extensions of the above arguments to the cases of inho-
mogeneous charge distributions [3] and perpendicular
electric fields [4] exist.

In order to match Zeta potentials (obtained from mo-
bility measurements via the HS equation) with surface
potentials derived from the actual charge of highly
charged particles, a large fraction of counterions has to
be assumed to lie within the surface of shear [1,2,5]. This
layer of counterions is customarily associated with the
Stern layer (initially introduced to account for ions stati-
cally surface adsorbed by nonelectrostatic forces [6]).
Alternative explanations involve a spatially varying vis-
cosity or dielectric constant close to the substrate [1,7].
The situation is complicated by the fact that conduction
measurements indicate that a large fraction of ions below
0031-9007=03=91(13)=138101(4)$20.00 
mobile and contributes to the electric current [8]. These
concepts introduce a number of adjustable and hard to
directly measurable parameters (in that respect it is in-
teresting to note that the concept of a no-slip shear sur-
face has been critically examined for uncharged simple
liquids at large shear [9]). Obviously, there is an intricate
interplay between solvent viscosity effects (embodied by
the concept of the shear surface within HS theory) and
friction effects between counterions and more or less
localized and protruding surface charges (excluded in
all standard treatments by the assumption of lateral sub-
strate homogeneity). The present paper is a first step
towards a microscopic understanding of this friction (in-
cluding effects far from equilibrium, i.e., large electric
fields). We use dynamic simulation methods and consider
a surface made up of charged, hard spheres (which are
either fixed or can move in the electric field). In the
simulations, we neglect hydrodynamic interactions and
concentrate on the direct electrostatic friction between
surface ions and counterions; hydrodynamic effects are
taken into account at the end by adapting the HS equation.
We introduce a dynamic interpretation of the Stern layer,
which is defined to comprise all ions that are dynamically
bound to the substrate. For highly charged surfaces, more
and more counterions become immobilized, in accord
with measured Zeta potentials [5].

In the simulations we consider a two-dimensional
layer of N charged spheres of valency q and diameter a
(at z � 0), together with N oppositely charged counter-
ions of the same valency and diameter, which are con-
fined to the upper half-space (z > 0) in a cubic simulation
2003 The American Physical Society 138101-1
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FIG. 2. Laterally averaged counterion-density profiles for
Coulomb coupling ! � 2:5 for zero electric field as a function
of the rescaled distance from the surface (surface ions are fixed
on a square lattice). Shown are results for surface ion densities
(a) �sa2 � 0:0079 (open squares) and �sa2 � 0:05 (open tri-
angles), (b) �sa2 � 0:5 (open diamonds) and �sa2 � 2 (filled
triangles), together with the mean-field predictions for the
laterally homogeneous case (solid lines).
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box of length L (see Fig. 1). The density of surface ions is
�s � N=L2. From the position Langevin equation, the
velocity of the ith particle at time t follows as

_rr i�t� � ��0rriU�t� ��0qesiE� �i�t�; (1)

where �0 is the bare particle mobility, U is the potential
energy, E the external electric field, si � �1 for surface
ions/counterions, and �i is a vectorial random force acting
on particle i. The random force is correlated according to
h�i�t� 	 �j�t0�i � 6kBT�0��t� t0��ij. In the simulations,
we discretize Eq. (1) with a time step � and rescale all
lengths by the ion diameter a according to ~rri � ri=a. The
iterative Langevin equation in terms of the discrete time
variable n � t=� now reads

~rri�n� 1� � ~rri�n� � ~��0r~rri
~UU�n� � ~��0si ~EE�

���������
6 ~��0

p
~��i�n�;

where ~UU � U=kBT is the dimensionless potential energy,
~EE � qeaE=kBT the rescaled electric field, and the re-
scaled random force has variance unity, h~��i�m� 	 ~��j�n�i �
�mn�ij. The only dynamic parameter remaining is the
rescaled mobility ~��0 � ��0kBT=a

2 which is the diffu-
sion constant in units of the particle diameter a and time
step �. We chose ~��0 � 0:0005 as a compromise between
efficiency and accuracy. The potential energy has two
contributions, ~UU � ~UUc � ~UULJ. The Coulombic part is

~UU c � !
X
i<j

sisj
j~rri � ~rrjj

; (2)

where ! � q2‘B=a is the Coulomb parameter and mea-
sures the ratio of the Coulomb interaction and the thermal
energy at the minimal distance a [‘B � e2=
4$"kBT� is
the Bjerrum length, in water, ‘B � 0:7 nm]. Collapse of
counterions and surface ions is prevented by a truncated
Lennard-Jones term acting between all particles,

~UU LJ � %
X
i<j

�
1

�~rri � ~rrj�12
�

2

�~rri � ~rrj�6
� 1

�
; (3)

used for separation j~rri � ~rrjj< 1 only with an energy
parameter % � 1. Boundary effects are minimized by
using minimal image boundary conditions. Equili-
bration takes roughly 106 time steps; simulations were
run for typically 107 time steps with N � 50 to 200
particles with no detectable finite-size effects.

The model we consider includes the combined effects
of discrete surface charges, surface corrugations, and
counterion excluded volume, which are all neglected in
the classical mean-field approaches. To clarify the static
case, we show in Fig. 2 laterally averaged counterion
density profiles for fixed Coulomb strength ! � 2:5 and
various surface-ion densities, together with the mean-
field (MF) prediction for the laterally homogeneous
case [10], which reads in normalized form ��z�=�s �
��1=�1� z=��2. The Gouy-Chapman length � �
a=�2$!a2�s� is a measure of the decay length of the
profiles. For small densities, Fig. 2(a), the measured pro-
files agree quite well with the MF predictions, as ex-
138101-2
pected, since the Gouy-Chapman length is larger than
the lateral surface-ion separation and the charge modu-
lation and hard-core repulsion matter little. However,
even for the smallest density considered (open squares),
there are some deviations in the distance range z=a < 1
which we attribute to the hard-core repulsion between
surface ions and counterions [11]. For the larger surface
densities in Fig. 2(b), the deviations become more pro-
nounced (simply shifting the MF profiles does not lead to
satisfactory agreement). For �sa2 � 0:5 (open diamonds),
some counterions still reach the surface at z � 0, but the
profile is considerably shifted to larger values of z due to
the impenetrability of surface ions and counterions.
Finally, for �sa2 � 2 (filled triangles), the surface ions
form an impenetrable but highly corrugated layer, and the
counterion profile is shifted almost by an ion diameter
outwards (and a second layer of counterions forms). These
results remind us that in experimental systems a number
of effects are present which make comparison with
theories based on laterally homogeneous charge distribu-
tions difficult. The traditional concept of a statically de-
fined Stern-layer beyond which MF profiles are recovered
is therefore highly ambiguous. As a side remark, the
coupling constant � � 2$�sa

2!2 (which measures de-
viations from MF theory due to fluctuations and cor-
relations) is for the data in Fig. 2(b) in a range where
deviations from MF theory are becoming noticeable for
the smeared-out case [12] but are totally overwhelmed by
the more drastic effects illustrated in Fig. 2.

In Fig. 3, we plot the mean electrophoretic counter-
ion mobility, which is an average over all counterions
according to ~�� �

P
N
i�1 �~rri�n� 1� � ~rri�n��=�N ~EE� and is

equivalent to the conductivity. The mobility ~�� divided
138101-2
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by the bare mobility ~��0 reaches unity for vanishing
interactions between surface ions and counterions and
also in the case of a laterally homogeneous substrate.
Indeed, for ! � 0:5 (open diamonds), the mobility for
mobile and fixed surface ions in Figs. 3(a) and 3(b) is
close to the maximal value of unity. Experimentally, the
minimal distance between oppositely charged dehydrated
ions is 2:5 �A; for monovalent ions a typical value for the
Coulomb parameter thus is ! � 3. For elevated densities
of the order of �sa2 � 0:5, reached in highly charged
surfactant layers or minerals, our results indicate for
! � 3 a mean mobility of roughly one-half. This decrease
in electrophoretic mobility is solely caused by the electro-
static friction between surface ions and counterions and
has not been included in previous theoretical attempts to
explain the observed decrease of electrophoretic mobility
of highly charged particles. In order to be able to combine
hydrodynamic effects (as embodied in the HS theory) and
electrofriction, we have to understand the microscopic
structure of the counterion layer in more detail.

In Fig. 4, we show ion snapshots both for mobile and
fixed surface ions for surface-ion density �sa2 � 0:5 and
coupling ! � 2:5 and different field strengths. For small
fields, the counterions penetrate into the surface-ion layer.
As the electric field is increased, counterions lift off
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FIG. 3. Averaged electrophoretic counterion mobility for
Coulomb parameters ! � 0:5 (open diamonds), ! � 3 (filled
triangles), and ! � 5:5 (open squares) in a constant lateral field
~EE � 0:4 as a function of the surface ion density for (a) mobile
surface ions and (b) surface ions fixed on a square lattice.
(c) Electrophoretic counterion mobility for mobile (open dia-
monds) and fixed surface ions (filled triangles) at surface-ion
density �sa2 � 0:5 and Coulomb coupling ! � 2:5 as a func-
tion of the reduced electric field.
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from the surface ions and form a ’’floating layer.’’ This
is paralleled by the mobility in Fig. 3(c) which increases
as a function of the field [a field of ~EE � 0:4 as used in
Figs. 3(a) and 3(b) corresponds to the quasistatic limit].
One notes a pronounced mobility difference between the
mobile and fixed surface-ion cases, which might help to
rationalize the observed Zeta-potential differences be-
tween surfaces with stiff and rather flexible or protruding
surface groups [1]. Likewise, it seems that a strong ap-
plied field might preempt the demixing transition pre-
dicted for highly charged mobile surface-ion layers [13].

In Figs. 5(a) and 5(b), the corresponding counter-
ion density profiles are shown for the mobile and fixed
surface-ion case. As already seen in the snapshots, the
density profiles shift to larger distances in the z direction
for increasing field strength. By doing this, the counter-
ions avoid being trapped within the surface-ion layer, and
the conduction is maximized (though hydrodynamic in-
teractions will certainly play a role at such elevated field
strengths). In Fig. 5(c), the corresponding counterion
mobility profile is shown for the fixed surface-ion case
[the mean mobility in Fig. 3 is the integrated product of
the density and mobility profiles in Figs. 5(b) and 5(c)].
For the smallest field considered, ~EE � 1 (open diamonds),
which belongs to the linear quasistatic regime, the mo-
bility is highly reduced for distances below roughly
z=a � 1, which is plausible since in this distance range
surface ions and counterions experience strong excluded-
volume interactions. The maximal mobility of ~��= ~��0 � 1
is reached quickly for larger separations from the surface.
For larger fields, the crossover in the mobility profiles
moves closer to the surface and, since the density at the
FIG. 4. Snapshots of ion configurations for a surface density
�sa

2 � 0:5 and Coulomb coupling ! � 2:5 for different field
strengths. In the left column, the surface ions are mobile; in the
right column, the surface ions are fixed on a square lattice. The
field moves counterions from the right to the left (and mobile
surface ions in the opposite direction).
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FIG. 5. Counterion density profiles for fixed Coulomb cou-
pling ! � 2:5 and surface ion density �sa2 � 0:5 for different
electric field strengths ~EE � 0 (filled squares), ~EE � 1 (open
squares), ~EE � 10 (filled triangles), and ~EE � 40 (open dia-
monds) for (a) mobile and (b) fixed surface ions. (c) Shown
are the counterion mobility profiles for fixed surface ions for
three different electric field strengths; same notation as in (b).
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wall decreases, the fraction of immobile counterions goes
drastically down [and the average reduced mobility
reaches unity quickly for elevated fields, see Fig. 3(c)].
These results suggest how to include frictional effects
within the HS theory: Since the decrease of the mean
electrophoretic mobility is caused by a fairly localized
layer of immobilized counterions, the relative mobility
~��= ~��0 can be interpreted as the fraction of mobile ions, or,
in other words, the fraction of counterions that is not
located within the stagnant Stern layer (according to a
dynamical definition of the Stern layer which is unam-
biguous and connects to the experimentally relevant Zeta
potential). This amounts to replacing the profiles in
Fig. 5(c) by step profiles. Furthermore assuming the sur-
face of shear to coincide with the Stern-layer surface, the
HS equation is valid provided the Zeta potential  s is
calculated for a surface charge reduced by the immobi-
lized counterions. Our results for the mean counterion
mobility (i.e., the fraction of mobile counterions) in
Figs. 3(a) and 3(b) show that the electrophoretic mobility
or Zeta potential is predicted to decrease drastically as
the charge density increases, without the need to invoke
modified surface viscosities or dielectric constants [1,7]
(which clearly play a role, though maybe less prominently
as believed). Experimentally, the fraction of mobile coun-
138101-4
terions, inferred from mobility measurements of poly-
styrene lattices at low salt, was found to be 1.05, 0.83, and
0.71 for charge densities �s‘2B � 0:154, 0.31, and 0.34,
respectively [5], in qualitative agreement with our results
[see Fig. 3(b)].

A reduced electric field ~EE � 1, approximately where
the crossover between the linear and the dissipation-
dominated far-from-equilibrium regime starts, corre-
sponds for an ion diameter a � 0:25 nm and monovalent
ions (q � 1) to a field of E ’ 1� 108 V=m which is
beyond experimental field strengths. This shows that non-
linear effects are unimportant in electrophoretic experi-
ments using substrates with corrugations on the atomic
scale (and q � 1). On the other hand, assuming a modu-
lation wavelength of a � 5 �m and a macroion valency
of q � 200 gives for a reduced value of ~EE � 1 a field
strength of E ’ 100 V=m which is a very moderate value.
Modifications of ion-distribution functions at structured
substrates in far-from-equilibrium situations should thus
be easily observable in microstructured electrophoretic
chambers and using macroions (DNA molecules or
charged proteins and colloids).
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