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(Received 12 November 2002; published 26 September 2003)
136803-1
It is believed that a disordered one-dimensional (1D) wire with coherent electronic conduction is an
insulator with the mean resistance h�i ’ e2L=� and resistance dispersion �� ’ eL=�, where L is the wire
length and � is the electron localization length. Here we show that this 1D insulator undergoes at full
coherence the crossover to a 1D ‘‘metal,’’ caused by thermal smearing and resonant tunneling. As a
result, �� is smaller than unity and tends to be L=� independent, while h�i grows with L=� first nearly
linearly and then polynomially, manifesting the so-called medium localization.
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length L would become smaller than �. This would give end of the wire are set at x � 0 and x � L, respectively.
Any coherent electron wave in a one-dimensional (1D)
wire with uncorrelated disorder is exponentially localized
[1]. The resistance � of such a disordered 1D wire should
therefore increase exponentially with the wire length, L.
In an ensemble of macroscopically identical wires the
resistance fluctuates from wire to wire owing to disorder
randomness, so it is natural to study the mean resistance
h�i, where the angular brackets denote the average over
the ensemble. Landauer found at zero temperature [2]

h�i � 0:5�exp�2L=�� � 1	 ; (1)

where � is the electron localization length (through-
out this Letter, � is a dimensionless resistance in units
h=2e2). He also found that h1=�i diverges and noted
that h�i is not representative of the ensemble. Anderson
et al. [3] later defined the typical resistance �t 

exphfi � 1, where f � ln�1� ��. For T � 0 K they found
hfi � L=�, i.e.,

�t � exp�L=�� � 1: (2)

The variable � exhibits giant fluctuations, the dispersion
�� 
 �h�2i � h�i2�1=2=h�i can be shown to grow as [4]

�� ’ exp�L=��: (3)

However, �f / 1=
����
L

p
, which means that the variable f

self-averages and �t is representative of the ensemble [3].
The above formulas hold also for a quasi-1D wire with

many 1D channels [5,6]. Thus, for T � 0 K and L > �
any 1D wire is insulating, i.e., both the resistance and
fluctuations grow exponentially with L=�.

Thouless [5] argued that this exponential rise would
not be apparent at T > 0 K since the inelastic collisions
would cause electrons to hop from one localized state to
another. This would cause � / L and the 1D localization
would be manifested solely by a typical temperature
dependence of hopping, whenever the transport time
through the wire exceeds the inelastic scattering time.

At even higher temperatures, the electron coherence
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rise to the ‘‘metallic’’ resistance (� ’ L=�) and weak
localization (see, e.g., Ref. [7]). The crossover between
the metallic resistance and hopping, first predicted in
Ref. [5], has been observed in the quasi-1D wires [8].

Therefore, the disordered 1D insulator described by
Eqs. (1)–(3) is believed to exist at appropriately low
temperatures, i.e., without hopping and at full coherence
[7,9], and the crossover to the 1D ‘‘metal’’ seems to occur
only if inelastic collisions are present.

We show that the crossover to another 1D metal occurs
at full coherence due to the thermal smearing and reso-
nant tunneling. It results in the wire resistance rising with
L=� first nearly linearly and then polynomially owing to
the medium localization. In addition, �� becomes
smaller than unity and tends to be L=� independent.

The insulator-metal transition at T � 0 K has recently
been found in a 1D solid with specially correlated dis-
order [10]. In our work the disorder is uncorrelated and
the reported insulator-metal crossover, albeit also coher-
ent, is driven by low nonzero temperatures.

We consider a 1D wire with disorder described by
potential V�x� �

P
N
j�1 ���x� xj�, where ���x� xj� is

the �-shaped impurity potential of strength �, xj is the
jth impurity position randomly chosen along the wire,
and N is the number of impurities. If the 1D electrons
tunnel through disorder coherently, the electron wave
function �k�x� is the solution of the tunneling problem�

�
h2

2m
d2

dx2
� V�x�

�
�k�x� � "�k�x�; (4)

�k�x! 0� � eikx� rke�ikx; �k�x!L� � tkeikx; (5)

where " � h2k2=2m is the electron energy, k is the wave
vector,m is the effective mass, rk is the electron reflection
amplitude, and tk is the electron transmission amplitude.
In the boundary conditions (5) the electron impinging
disorder from the left is considered. The beginning and
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FIG. 1. Top panel: Mean resistance h�i and typical resistance
�t vs normalized length L=� for various normalized tempera-
tures T=T�. The dashed line is the metallic dependence � �
L=�. Middle panel: h�i and �t vs T=T� for various L=�. Bottom
panel: Dispersion of the resistance (left) and conductance
(right) vs L=� for various T=T�. The inset shows the com-

parison with the estimate 0:5
�����������
T�=T

q
(dashed line) derived in

the text.
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The transfer matrix (TM) of disorder V�x� reads [11]

T �

�
1=t�k �r�k=tk�

�rk=tk 1=tk

�
�T�xN� . . . T�x2�T�x1�; (6)

where

T �xj� �
�
1� i�=k �i�k e

�2ikxj

i�k e
2ikxj 1� i�=k

�
(7)

is the TM of the � barrier at position xj and � � m�= h2.
We evaluate the right-hand side of Eq. (6) numerically.

We then obtain the transmission probability T � jtkj
2

and evaluate numerically the two-terminal conductance

G �
Z 1

0
d"

�
�
df�"�
d"

�
T �"�; (8)

where f�"� is the Fermi distribution. To calculate the wire
resistance, instead of � � 1=G we use the formula [12]

� � 1=G� 1=f�0�; (9)

where 1=f�0� is the contact resistance ( ’ 1 at low T). At
zero temperature Eq. (9) gives � � R�"F�=T �"F�, where
R � 1�T and "F is the Fermi energy. Equations (1)–
(3) were derived [2– 4,6] by averaging the formula � �
R�"F�=T �"F�. We average Eq. (9) since T > 0 K.

We parametrize disorder by parameters RI�kF� andNI,
where RI�k� � �2=�k2 ��2� is the reflection probability
for a single � barrier and NI is the 1D impurity density.
Note that the final results do not depend on the choice of
RI�k� as we assume very small kBT="F. For RI�kF� � 1
we can also ignore fluctuations of RI�kF� from impurity
to impurity.

In Fig. 1 we show the averaged 1D resistance versus the
wire length and temperature. The results were obtained
for disorder with parameters RI�kF� � 0:01 and NI �
107 m�1 and for the electron gas parameters typical of
the GaAs wire: m � 0:067m0 and "F � 35 meV.

In fact, for RI�kF� � 1 andN�1
I � 2�=kF (weak low-

density disorder) our results depend only on the parame-
ters L=� and T=T�, independently on the choice of
RI�kF�, NI, m, and "F. Here kBT� � 1=�g�"F��	, where
g�"F� � 1=�� hvF� is the density of energy levels. For
weak low-density disorder the localization length is just
the elastic mean free path, i.e., � � �NIRI�kF�	�1 [3]. For
the above parameters � � 10 "m and T� ’ 1 K.

In the top panel of Fig. 1 we reproduce at T=T� � 0
the exponential growth (1) and (2). However, at
T=T� > 0 both h�i and �t tend to grow with L=� much
slower than predicted by Eqs. (1) and (2). At T=T� > 1
they exhibit up to L=� � 2 the metallic depen-
dence h�i � �t � L=� with a nonlinear correction
which is � 0:4L=�. For larger L=� this nonlinear growth
is still far much slower than exp�L=�� and in general not
exp�constL� (see Fig. 3).

The bottom panel of Fig. 1 shows the dispersions ��
and �g, where g � 1=�. At T � 0 K, �� follows the
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exponential rise (3) and �g diverges. As T increases, ��
and �g decrease below unity and variation with L tends to
disappear, unlike other transport regimes in which ��
and �g always vary with L in some typical way [7].

To provide insight we now approximate Eq. (8) by

G ’
1

4kBT

Z "F�2kBT

"F�2kBT
d"T �"�: (10)

A typical T �"� curve (Fig. 2) consists of narrow peaks
separated on average by energy kBTL � 1=�g�"F�L	.
Some of these peaks dominate due to the resonant tun-
neling, the rest are the much lower peaks with a negli-
gible area compared to the area below the resonant peaks.
The mean distance between the resonant peaks is kBT�
and the mean number of such peaks in the energy window
4kBT is 4kBT=kBT� [13]. Thus, for T * T� we can esti-
mate the mean and variance of the integral (10) as
136803-2



FIG. 2. (a) Transmission probability T �"� versus energy " for
one random configuration of disorder and distribution P�T �
averaged over many configurations. Energy axis is in units "F,
where "F � 35 meV. The length parameters are L=� � 8 and
L � 80 "m, other parameters are the the same as quoted for
Fig. 1. (b) The T �"� dependence from (a) in linear scale.
(c) Schematic generalization of (a),(b) (see the text).

FIG. 3. Mean resistance and typical resistance versus L=� for
various T=T�. The dashed line is the metallic resistance � �
L=�. Inset to the left panel: The T � 12:5T� curve is shown in
more detail to stress the sublinear concave shape. The open
circles show the limit h�i � hGi�1 � 1, where hGi is given by
Eq. (12) with P�T � generated numerically. Inset to the right
panel: The typical resistance simulated up to L=� � 200, but
only for T=T� � 0:125 owing to huge computational time.
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hGi ’
T m�"
4kBT

4kBT
kBT�

;
��������������
var�G�

p
’
T m�"
4kBT

�����������
4kBT
kBT�

s
; (11)

where T m and �" are the average height and width of the
resonant peak. Equations (11) give the L-independent
dispersion �G ’ 0:5

�����������
T�=T

q
, in Fig. 1 compared with the

simulated �g. A small difference between g and G is not
essential here, the estimate and simulation differ because
the var�G� in Eq. (11) ignores deviations from T m�".

At T * T� thermal averaging causes h1=Gi ’ 1=hGi.
Then h�i � h1=Gi � 1 ’ 1=hGi for not too small L=�.
To illustrate how the coherent wire becomes more me-
tallic than insulating, we set in Eq. (11) the ‘‘ballistic’’
maxima T m � 1 and �" � kBTL. We obtain hGi ’
TL=T� � �=L and h�i ’ L=�. This metal exists if the
window 4kBT involves at least one resonant peak. This
happens for 4T=T� � 1, i.e., the crossover temperature
is T0 � 0:25T�.

For T > T0 we see in the middle panel of Fig. 1 a
tendency to the T independence, in accord with the
T-independent hGi of Eq. (11). Generally, h�i�1=
hGi�1 for T � T0, but hGi is T independent for any T:

hGi �
Z 1

0
d"

�
�
df�"�
d"

�
hT �"�i ’

Z 1

0
dTT P�T �;

(12)

where P�T � is the distribution of transmission T (Fig. 2).
Figure 3 shows h�i and �t from Fig. 1 in semilog scale.

For T > T� both h�i and �t rise with L=� nonlinearly, but
far much more slowly than exp�L=��. Is this rise of the
form exp�constL�? It is not at least for L=� & 12. The
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inset to the left panel clearly shows that the rise is sub-
linear in semilog scale. Since h�i ! �t, we continue in
terms of �t, which is defined by ln�1� �t� 
 hln�1� ��i.
Obviously, equation hln�1� ��i � const� L cannot fit
the sublinear curve in the inset. The resistance thus rises
with L polynomially rather than exponentially. This is
neither the strong localization [the SL is manifested by
Eqs. (1)–(3)] nor the weak localization (the WL occurs at
L=� � 1), but somewhere between. We therefore speak
about the medium localization, which means a nonexpo-
nential decay of resonant transmission with L=�.

What happens for extremely large L=�? The inset to
the right panel shows the typical resistance for T � T�.
Here the rise / exp�L=�� reappears at L=� * 50. For
T > T� neither �t nor h�i is numerically feasible, but
for L=� * 40 we find �t ’ h�i / �L=��3=2 exp�L=4�� by
using another approach not reported here. In the ‘‘infi-
nite’’ wire also the resonant transmission is finally
damped exponentially.

Note, however, that the limit of extremely long coher-
ent 1D segments is experimentally irrelevant. In general,
the resistance * 109 � is hardly measurable owing to
intrinsic physical limitations (e.g., the rf noise [8]). On
the insulating side of the crossover, one can thus measure
�t ’ eL=� in principle for L=� & 12. On the metallic side,
both h�i and �t reach 109 � for L=� ’ 30 (not shown in
Fig. 3), so they could be measurable for L=� & 30.

In Ref. [14] the resistance of a single 1D channel was
measured for various L > � in a series of GaAs quantum
wires prepared by a method allowing to reproduce macro-
scopic parameters from wire to wire. In Fig. 4 the experi-
ment [14] is compared with our simulation. In inset (a) we
compare the two-terminal resistances. We see that the
measured data reasonably reflect the superlinear rise of
the theoretical curve. Inset (b) proves that the superlinear
136803-3



FIG. 4. (a) Open circles are the two-terminal resistance data
of Ref. [14], measured at T � 4:2 K in a series of GaAs
quantum wires with a single occupied channel. In these wires
� ’ 1:5 "m and "F ’ 3:5 meV, as the quantized ballistic con-
ductance is observed for L & 1:5 "m and the lowest quantized
step is centered roughly at the mentioned "F value [14]. For
these parameters T� ’ 2 K. The full line shows the simulated
mean two-terminal resistance, h1=Gi. In our simulation the
value � ’ 1:5 "m can be realized through many different
combinations of parameters NI and RI�kF�, but the results
remain the same provided the disorder is weak. So we do not
need to consider sample-dependent details. (b) Open circles are
the experimental data from inset (a) reduced by the contact
resistance (the two-terminal resistance at L ! 0). To prove the
superlinear rise with L clearly, the experimental data are
compared with the linear fit � � L=�. The best fit is obtained
for � � 0:6 "m (dashed line). However, it overestimates all
experimental data for L � 2 "m and the value � � 0:6 "m is
in contradiction with the ballistic conductance observed for
L & 1:5 "m [14]. For � � 1:5 "m (full line) the fit is indeed
good for the ballistic wire lengths, but for L > 2 "m the
experimental data grow superlinearly. Main panel: The calcu-
lated mean resistance h�i (full circles), standard deviation from
h�i (vertical bars), and resistance distribution P��� are shown.
Open circles are the same as those in inset (b).
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rise of the measured data is systematically above � �
L=� and cannot be ascribed to the data dispersion. The
main panel shows that the simulated mean resistance,
standard deviation and resistance distribution fit [12]
the experiment. For a perfect comparison experiments
with very large ensembles of wires are needed.

If decoherence would be present in the experiment [14],
it would cause the dependence � � L=�, which is not
observed. This means that in the measured 1D wires
L * 8 "m, which is an order of magnitude more than
in a related 2D electron gas at the same temperature [7].
Why is L so large? At low temperatures decoherence is
due to the electron-electron interaction. In the (ballistic)
2D electron gas the interaction of two electrons fulfills
the conservation laws "�k1� � "�k2� � "�k01� � "�k02� and
k1 � k2 � k01 � k02, which allow the energy exchange and
decoherence. In the 1D system such conservation laws
prohibit any energy exchange, which might be the reason
for large L. One might think [9] that L & � since the
136803-4
diffusion is controlled by exponential localization. In our
case L can exceed � many times as the resistance of
segment L grows with L=� weakly superlinearly, not
exponentially. A full calculation of L in the 1D wire is
beyond the Fermi-liquid theory and has not yet appeared.

In summary, due to the thermal smearing and resonant
tunneling, the disordered 1D insulator shows at full co-
herence the crossover to the 1D metal. The resistance of
the 1D metal grows with L=� first nearly linearly and then
polynomially due to the medium localization. This is in
contrast to the expectation that the resistance of the
coherent 1D system grows with L=� exponentially if
L=� > 1. The 1D metal shows the resistance dispersion
which is almost L=� independent and smaller than unity,
again in contrast with the expected (exponential) growth.
Such 1D metal should be observable in any coherent 1D
system of length L=� & 30, longer coherent segments are
experimentally irrelevant. The crossover temperature is
T0 � 0:25T�, in the GaAs wires T0 ’ 0:1–1 K.
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