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Interaction Effects on Counting Statistics and the Transmission Distribution
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We investigate the effect of weak interactions on the full counting statistics of charge transfer
through an arbitrary mesoscopic conductor. We show that the main effect can be incorporated into an
energy dependence of the transmission eigenvalues and study this dependence in a nonperturbative
approach. An unexpected result is that all mesoscopic conductors behave at low energies such as either a
single or a double tunnel junction, which divides them into two broad classes.
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It has been shown that at low-energy scales the relevant
part of the electron-electron interaction in mesoscopic
conductors comes from their electromagnetic environ-
ment [1]. The resulting dynamical Coulomb blockade
has been thoroughly investigated for tunnel junctions
[2]. The measure of the interaction strength is the ex-
ternal impedance Z(w) at the frequency scale () =
max(eV, kzT) determined by either the voltage V at the
conductor or its temperature T. If z = G, Z({)) < 1 (with
the conductance quantum GQ = ¢? /2rh), the interaction
is weak, otherwise Coulomb effects strongly suppress
electron transport.

A tunnel junction is the simplest mesoscopic conductor.
An arbitrary mesoscopic conductor in the absence of
interactions is characterized by its scattering matrix or,
most conveniently, by a set of transmission eigenvalues 7,
[3]. This Landauer-Biittiker approach to mesoscopic
transport can be extended to access the full counting
statistics (FCS) of charge transfer [4]. The FCS contains
not only the average current but also current noise and all
higher order moments of current correlations.

Interaction effects on general mesoscopic conductors
are difficult to quantify for arbitrary z. For z < 1, one
can employ perturbation theory to first order in z [5].
Recent work [6,7] associates the resulting interaction
correction to the conductance with shot noise properties
of the conductor. The interaction correction to noise is
associated with the third cumulant of charge transfer [8].
This motivates us to study the interaction correction to all
cumulants of charge transfer, i.e., to the FCS. The recent
experiment [9] addresses the correction to the conduc-
tance at arbitrary transmission.

A tunnel junction in the presence of an electromagnetic
environment exhibits an anomalous power-law /-V char-
acteristic, (V) = V**1 The same power-law behavior is
typical for tunnel contacts between one-dimensional in-
teracting electron systems, the so-called Luttinger liquids
[10]. It has also been found for contacts with arbitrary
transmission between single-channel conductors in the
limit of weak interactions [11]. In this case, the interac-
tions have been found to renormalize the transmission.
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In this Letter, we study the effects of weak interactions
z < 1 on the FCS of a phase-coherent multichannel con-
ductor. In the energy range below the Thouless energy, to
which we restrict our analysis, its transmission probabili-
ties T, are energy independent in the absence of inter-
actions. We first analyze the interaction correction to first
order in z. We identify an elastic and an inelastic contri-
bution. The elastic contribution comes with a logarithmic
factor that diverges at low energies suggesting that even
weak interactions can suppress electron transport at suf-
ficiently low energies. To quantify this, we sum up inter-
action corrections to the FCS of all orders in z by a
renormalization group analysis. We show that the result
is best understood as a renormalization of the transmis-
sion eigenvalues similar to that proposed in [11]. The
renormalization causes an energy dependence of the
transmission eigenvalues according to the flow equation,

dT,(E)

dInE = 2ZTn(E)[1 - Tn(E)] (1)

To calculate transport properties in the presence of inter-
actions, one evaluates T,(E) at the energy E = ().

With relation (1), we explore the effect of interactions
on the distributions of transmission probabilities for
various types of mesoscopic conductors. In general,
their conductance G and their noise properties display a
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FIG. 1. Mesoscopic conductor (conductance G) in an electro-
magnetic environment [impedance Z(w)]. We formulate its
quantum dynamics in terms of the fluctuating fields ¢= (7).
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complicated behavior at z|InE| =~ 1 that depends on de- We start out by evaluating the interaction correction to
tails of the conductor. However, in the limit of very low  the FCS to first order in z. We analyze the circuit (Fig. 1)
energies z| InE| > 1, we find only two possible scenarios. of a mesoscopic conductor in series with an external
The first one is that the conductor behaves similar to a  resistor Z(w) biased with a voltage source V [12]. For
single tunnel junction with G(V) = V%, In the other sce-  this we employ a nonequilibrium Keldysh action tech-

nario, the transmission distribution approaches that of a  nique [13]. Within this approach, one represents the gen-
symmetric double tunnel junction. The conductance  erating function F(y) of current fluctuations in the circuit
scales then as G(V) = V<. Any given conductor follows  as a path integral over the fields ¢~ (¢) defined on the time
one of the two scenarios. This divides all mesoscopic  interval [0, 7], that represent the fluctuating voltage in the

conductors into two broad classes. node shared by mesoscopic conductor and external resis-
| tor. The path integral representation of F(y) reads
j:(/\/) = '[D¢+D¢7 CXP{_iSc[¢+, ¢7] - iSenv[q) + X/z - ¢+, d — X/Z - ¢7]}: (2

where d®(1)/dt = eV. Derivatives of F(y) with respect to y at y = 0 give moments of the charge transferred through
the circuit during a time interval 7. The Keldysh action is a sum of two terms S, and S, describing the environment
and the mesoscopic conductor, respectively.

We assume a linear electromagnetic environment that can be fully characterized by its impedance Z(w) and its
temperature 7. Its action is bilinear in ¢~,

Senv = zlf dt [ di[¢" (ATt — 1N () + dT WAt —1)d~ () + ¢~ (DA™ (t — 1)~ ()],
mJo 0

with |
Lo _ (the ““check’ marks 2 X 2 matrices in Keldysh space) of
++ - _ 1 1
A+7(w) o .lw[z (@) -l:l2N(w) Rez™H(@)], electrons in the reservoirs next to the conductor [14]. It
A" () = dioN(w)Rez" (), (3)  takes the form of a trace over frequency and Keldysh
A" (w) = —[ATT ()] indices,

Here, N(w) = {exp[w/kzT] — 1}7! is the Bose-Einstein
distribution function and z(w) = Gy Z(w) the dimension-
less frequency-dependent impedance.

The action S, of the mesoscopic conductor can be  and depends on the set of transmission eigenvalues T, of
expressed in terms of Keldysh Green functions CV;R‘ L the conductor. The fields ¢* () enter the expression as a
| gauge transform of G in one of the reservoirs,

. T . .
Sc = %;TI‘ ln[l + In ({GL’ GR} - 2):|; (4)

e e . G400 e i g
Ggr=G™ and GL(t,t’)=[ 0 b [CTC=NC T | (5)

G™ is the equilibrium Keldysh Green function,

This defines our model that is valid for any external

Gres(e) = ( 1—2f(e) 2f(e) ) ©) impedance but is hardly tractable in the general case. We

2[1 = f(e)] 2f(e) —1) proceed with perturbation theory in z. To zeroth order in

z, the fields ¢*(z) do not fluctuate and are fixed to eVt +

f(e) being the equilibrium electron distribution function. x/2. Substituting this into Eq. (4), we recover Levitov’s
formula for noninteracting electrons,

InFO0) = ~irS000 = 7 [ 455 1 + T - DAG - )+ - DR @)

[fr = f and f,(€) = f(e — eV)]. Interaction effects manifest themselves at higher orders in z. To assess the first order

correction, we expand the nonlinear S, to second order in the fluctuating fields ¢~ (¢). We integrate it over ¢~ with the

weight given by S.,,. The expression for the correction can be presented as [15]

Re z(w)
1)

{2N(w) + 118V () + N(@)SP(w, x) + [N(w) + 118D (—w, x)}. (8)

mn n

InFV(y) = —ir ]oo dow
0

The three terms in square brackets correspond to elastic electron transfer, inelastic transfer with absorption of energy
hw from the environment, and inelastic electron transfer with emission of this energy, respectively. It is crucial to note
that inelastic processes can occur only at frequencies w =< () and that their contribution to the integral is thus restricted
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to this frequency range. In contrast, elastic con-
tributions come primarily from frequencies exceeding
the scale ). If z = const(w) for w < A, the elastic cor-
rection diverges logarithmically, its magnitude being
=~ zInA/Q. This suggests that (i) the elastic cor-
rection is more important than the inelastic one and

S0 = i3, [ 32D~ 1) + 27,

(i1) a small value of z can be compensated for by a large
logarithm, indicating the breakdown of perturbation
theory. The upper cutoff energy A is set either by
the inverse RC time of the environment circuit or
the Thouless energy of the electrons in the mesoscopic
conductor.

The concrete expression for Si(é) reads

— Df (1= fg) + 2T5(cosy — Df (1 = f)(fx — fr)]

+T,D,+(1—=D,)1-D)}+{Re=L xye —x} )
D, ={1+T,[f (1 = fp)eX = 1) | ;
1= fe = D], 10 _ T
+ fr(l = fr)(e )]t (10 pp(T) FTTU P pA<§ T D > (14)
ft(e) = fle + w), Df(e)=D,(e + ). (11) We now analyze its low-energy limit £ — 0. Any given

The elastic correction can be presented as

9S©)
T with 6T, = —2T,(1 —T,). (12)

Sel = ZBTn
n

This suggests that the main effect of interactions is to
change the transmission coefficients 7,,. It also suggests
that we can go beyond perturbation theory by a renor-
malization group analysis that involves the T, only. In
such an analysis, one concentrates at each renormaliza-
tion step on the “fast” components of ¢* with frequen-
cies in a narrow interval e around the running cutoff
frequency E. Integrating out these fields, one obtains a
new action for the “slow” fields. Subsequently, one re-
duces E by dw and repeats the procedure until the run-
ning cutoff approaches (). We find that at each step of
renormalization the action indeed retains the form given
by Eq. (4) and only the 7, change, provided z <«
min{l, G,/G}. The resulting energy dependence of the
T, obeys Eq. (1). The strict proof of this involves manipu-
lations on the action (4) with time dependent arguments
¢*(?). It is very technical and we do not give it here. The
approximations that we make in this renormalization
procedure amount to a summation of the leading loga-
rithms in every order of the perturbation series.

In the rest of the Letter, we analyze the consequences
of Eq. (1) for various mesoscopic conductors. Equation (1)
can be explicitly integrated to obtain

A 2z
=t e= (1)
1 =T (1~=¢§) A

in terms of the “high energy” (noninteracting) trans-
mission eigenvalues 7*. A mesoscopic conductor con-
taining many transport channels is most conveniently
characterized by the distribution p,(7T) of its transmis-
sion eigenvalues [16]. It follows from Eq. (13) that the
effective transmission distribution at the energy scale E
reads
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transmission eigenvalue will approach zero in this limit.
Seemingly, this implies that for any conductor the trans-
mission distribution approaches that of a tunnel junction,
so that all 7, < 1. The overall conductance would be
proportional to ¢ as in Ref. [5]; the FCS becomes the
Poisson statistics of independent tunneling events.
Indeed, this is one of the possible scenarios. A remark-
able exception is the case that the noninteracting p, has
an inverse square root singularity at 7 — 1. Many meso-
scopic conductors display this feature, most importantly
diffusive ones [16]. In this case, the low-energy trans-
mission distribution approaches a limiting function,

| ¢
p«(T) = 7,3(17_7,

P+ 1s known to be the transmission distribution of a double
tunnel junction: two identical tunnel junctions in series
[17]. The conductance scales in this limit similar to &'/2.
The ratios of the cumulants of charge transfer approach
those in a double tunnel barrier. This sets an alternative
low-energy scenario. We are not aware of transmission
distributions that would give rise to other scenarios.

We believe that this is an important general result in the
theory of quantum transport and suggest now a qualita-
tive explanation. The statement is that the conductance of
a phase-coherent conductor at low voltage and tempera-
ture () << A asymptotically obeys a power law with an
exponent that generically takes two values:

2
GOC(%)Z or Gtx(%)Z.

For tunneling electrons, the exponent is 2z. An electron
traverses the conductor in a single leap. The second pos-
sible exponent z has been discussed in the literature as
well, in connection with resonant tunneling through a
double tunnel barrier in the presence of interactions [10].
There the electron first jumps over one of the barriers
ending up in a discrete state. Only in a second jump over
the second barrier the charge transfer is completed. Since
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FIG. 2. Renormalization of conductance G (logarithmically),
Fano factor F = C,/G, and third cumulant C; normalized by
the conductance in a tunnel junction (solid line), a double
tunnel barrier (dotted line), a double point contact (short
dashed line), and a diffusive conductor (long dashed line).

it takes two jumps to transfer a charge, the electron feels
only half the counter voltage due to interaction with the
impedance Z at each hop. Consequently, the exponent
takes half the value for direct tunneling. Our results
strongly suggest that this transport mechanism is not
restricted to resonant tunneling systems. In other words,
resonant tunneling seems to occur in systems of a more
generic nature than generally believed. As far as transport
is concerned, a mesoscopic conductor is characterized by
its scattering matrix regardless of the details of its inner
structure. In this approach, the existence of discrete states
is hidden. Nevertheless, this scattering matrix does de-
pend on the internal structure of the conductor. The
inverse square root singularity of its transmission distri-
bution at 7 — 1 for a double tunnel barrier is due to the
formation of Fabry-Perot resonances between the two
barriers. Probably similar resonances are at the origin
of the same singularity for more complicated mesoscopic
conductors with multiple scattering. They are then the
intermediate discrete states that give rise to the modified
scaling of the conductance in the presence of interactions.
One may speculate that in diffusive conductors these
resonances are the so-called “nearly localized states™
found in [18].

The resonant tunneling scaling holds only if there are
enough large transmission eigenvalues to form the singu-
larity near 7 = 1. This requires that G is sufficiently
large. Once G(E) approaches G, in the course of renor-
malization, the singularity at 7 = 1 disappears and the
resonant tunneling scaling does not apply anymore.

With Egs. (13) and (14), we can evaluate the trans-
missions and the FCS in the intermediate regime & ~ 1.
Figure 2 shows the results for the first three cumulants
of charge transfer C, for several types of conductors
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whose noninteracting transmission distributions pA(7)
are known. Apart from the tunnel contact, all these con-
ductors approach the resonant tunneling scaling with
noise properties of a double tunnel barrier at small bias
(¢E<xD.

In conclusion, we have investigated the effects of in-
teractions on the FCS of a Landauer-Biittiker conductor
and found that their main effect can be incorporated into
an energy dependence of the transmission eigenvalues.
For an arbitrary conductor, the conductance in the low-
energy limit obeys one of two generic scaling laws. The
predicted scaling of conductance and FCS with energy
can be observed experimentally.
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