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We study a disordered, driven zero range process which models a closed system of attractive particles
that hop with site-dependent rates and whose steady state shows a condensation transition with
increasing density. We characterize the dynamical properties of the mass fluctuations in the steady
state in one dimension both analytically and numerically and show that there is a dynamic phase
transition in the density-disorder plane. We also determine the form of the scaling function which
describes the growth of the condensate as a function of time, starting from a uniform density
distribution.
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rate [3,9]. Interestingly, by regarding sites as particles
and masses as hole clusters, this model maps exactly

hopping rates are chosen independently from a common
distribution
Since the state of a system with an ordered phase in the
infinite time limit is typically very different from that far
from the steady state, different processes and time scales
may govern the dynamics in the steady state and the
relaxation towards it. Quenched disorder can strongly
affect the dynamical properties in both situations; in
particular, it may give rise to new dynamic universality
classes. In the absence of a general framework for ana-
lyzing nonequilibrium, disordered systems, it is evidently
of interest to develop a detailed understanding of these
changes using simple models.

We address the above issues in a disordered, driven zero
range process (ZRP) which is a stochastic lattice model of
interacting particles. In this process, a site can be occu-
pied by an arbitrary number of unit-mass particles.
Interparticle interactions are modeled by allowing the
hop-out rate of a particle to depend on the mass at the
site it leaves; in general, these rates may even be site
dependent. Remarkably, for any choice of rates, the steady
state of this model can be found exactly [1]. There has
been a surge in interest in the ZRP following the finding
that this model can show a condensation transition in
which at high densities, a finite fraction of particles
condense onto a single site. This transition occurs in the
steady state of the conserved mass model for a wide
choice of hopping rates [2]. Recent work on the ZRP has
been devoted to studying dynamical properties [3–5] and
using it to develop a general understanding of nonequili-
brium steady states [6,7], besides modeling various physi-
cal systems [2,8].

Here we consider a disordered, driven ZRP in one
dimension in which a particle hops forward at a rate
which is independent of the mass. Quenched disorder is
modeled by choosing site-dependent hopping rates drawn
from a distribution. The steady state of such a ZRP has
been shown to exhibit a phase transition, from a low
density, homogeneous phase to a high density phase
with a condensate at the site with the lowest hopping
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onto a simple traffic model of cars (particles) with differ-
ent preferred speeds on a single-lane highway, with no
possibility of overtaking. At low densities, an infinite
headway appears in front of the slowest car, correspond-
ing to the condensate in the ZRP [3,9].

Our results pertain both to the dynamical properties in
the steady state and to the manner in which the system
relaxes to it. While the former concerns the motion and
the decay of the density fluctuations about the mean in the
bulk of the system, the latter involves the transfer of a
macroscopic amount of mass from the bulk of the system
to the globally slowest site. We find that different time
scales govern these two processes. Our main results are
summarized below.

Steady state dynamics.—We calculate the speed of
density fluctuations in the steady state and identify the
regimes in the density-disorder plane in which this
speed vanishes, signaling a dynamic phase transition.
Our Monte Carlo simulations show that when this speed
is nonzero, the dynamic behavior remains the same as
that of a pure system, while it changes if the speed
vanishes.

Relaxation to the steady state.—We give an analytical
argument for the form of the scaling function which
describes the temporal growth of the condensate starting
from a uniform density distribution, and present numeri-
cal evidence to support our results. The dynamic expo-
nent is deduced from the growth law via a scaling
argument and agrees with earlier results based on a
deterministic traffic model [3,10,11].

The ZRP involves M particles on a ring of size L with
an arbitrary number of particles allowed at any site. A
particle hops out of a randomly selected site k to site
k� 1 with quenched rate wj�k� where the subscript j is
the index which ranks the rates in ascending order, with
j � 1 labeling the lowest rate. The rate w�k� is chosen to
be independent of the mass at site k so that the system has
on-site attractive interactions [12]. These site-dependent
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f�w� � ��n� 1�=�1� c�n�1��w� c�n; w 2 �c; 1�;

(1)

with c; n > 0. For this process, the probability of a con-
figuration C 	 fm�1�; . . . ; m�L�g in the steady state is
given by [3,9]

P�C� �
1

Z

YL
k�1

�
v

w�k�

�
m�k�

; (2)

with the constraint
P

km�k� � M. Here Z is the partition
function, m�k� is the mass at site k, and v is the fugacity.
The preceding equation gives the average mass �j �
v=�wj � v� at the site with hopping rate wj. Since the
total number of particles is conserved, we have

� �
1

L
v
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�

Z 1

c
dw

v
w� v

f�w�; (3)

where � � M=L is the density. The above equation im-
plies that in the thermodynamic limit, there exists a finite
critical density �c below which the fugacity increases
with density and above which v gets pinned to the lowest
hopping rate c. Thus, there is a phase transition from the
low density phase with mass of order unity at each site to
a high density phase with infinite mass at the site with the
lowest hopping rate [3,9]. The critical point, given by
�c � c �n� 1�=n�1� c�, is obtained from Eq. (3) on
setting v equal to c in the integral. This transition is
analogous to Bose-Einstein condensation in the ideal
Bose gas or in a system of noninteracting bosons in a
random repulsive potential [13].

We begin with a discussion of the steady state dynam-
ics, in particular, the study of the statistical fluctuations of
the density about its average. In a steady state carrying a
uniform current J, these fluctuations are carried as kine-
matic waves whose speed vkin is known to be given by
vkin � @J=@� from a general hydrodynamic argument
[14]. This speed plays an important role in determining
whether the quenched disorder changes the dynamic
universality class [15]. If vkin is nonzero, each density
fluctuation encounters a particular patch of disorder es-
sentially only once in an infinite system, as the probabil-
ity of returning is exponentially small. Thus, the noise
arising from the different patches of disorder is essen-
tially uncorrelated in time, and we would then expect the
kinematic wave to decay with the Kardar-Parisi-Zhang
(KPZ) exponent [16]. However, if vkin vanishes, then this
argument fails, and we would expect disorder to change
the dynamic universality class.

In order to determine the kinematic wave speed, we use
J � v and Eq. (3) to obtain

v�1
kin �

1

L
w1

�w1 � v�2
�

1

L
w2

�w2 � v�2
�

Z 1

c
dw

wf�w�

�w� v�2
;

(4)

where we have separated out the contributions from the
two slowest sites. The above expression for v�1

kin involves
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essentially the sum of the mass variances �2
j at sites with

rate wj where �2
j � vwj=�wj � v�2 is obtained for all j

and � using Eq. (2). (However, this expression for vari-
ance is invalid at the slowest site for � > �c, as explained
below.) For a given set fwg and fixed density, we solved
Eq. (3) numerically to determine the fugacity v which is
used to find �j and �2

j . The L dependence of the mass and
the variance was then found by averaging over a large
number ��106� of disorder configurations. Our findings
for the mean mass �j and the fluctuations �j are sum-
marized below.

For � < �c, each site supports mass of order unity with
fluctuations of the same order.

For � � �c, both �j and �j at a site with ordering
index j grow as �L=j�1=�n�1�. This can be seen by using
v��c� ’ c and changing w to a uniformly distributed
variable u defined by w� c � �1� c� u1=�n�1�.

For � > �c, the behavior of �j and �j in a typical
disorder configuration remains the same as that at the
critical point for j � 2. However, the disorder-averaged
variance �2

j for j � 2 grows with L at the same rate as
that for j � 1, and is larger than at any other site in the
rest of the system, even though the second slowest site
does not support a condensate. To understand this surpris-
ing feature, we numerically studied the distribution
P�xj 	 wj � v; L� for various j and L. For the slowest
site, this distribution approaches a delta function centered
about 1=L. Thus the expression for �2

j quoted above
breaks down for j � 1 since it predicts macroscopic fluc-
tuations at this site, implying the invalidity of the grand
canonical ensemble. To determine the variance at this
site, we use the sum rule �2

1 �
PL

j�2 �
2
j which follows

from mass conservation and the product measure form of
the steady state. Our numerical data show that for j > 1
and large L, the distribution P�xj; L� is of the form

P�xj; L� � L1=�n�1�Xj��xj � �j�L1=�n�1��	�xj � �j�; (5)

where 	 is the Heaviside step function, �j is of order 1=L
and Xj is the scaling function appearing in the distribu-
tion P �wj � w1; L� of variable wj � w1 in L trials. This
distribution can be calculated and is of the same scaling
form as Eq. (5) with �j � 0; the scaling function Xj�x� is
found to grow as xj�2 for x � 1 and decays as �1� x�n as
x ! 1. Note that Xj�x� approaches a nonzero value as x !
0 for j � 2. Using this scaling function in Eq. (5), we find
that �2

j � �L=j�2=�n�1� for j > 2, while for j � 2 it is of
the order L�n�2�=�n�1�. Since the contribution of �2

2 domi-
nates the rest in the sum rule, we find

�2
1 � �2

2 � L�n�2�=�n�1�: (6)

The anomalously large value of �2
2 is a consequence of the

nonzero probability for a near-vanishing difference be-
tween the two lowest rates.

We now return to Eq. (4) and determine vkin using the
results obtained above.
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FIG. 1. Plot of the tagged particle correlation C�k; t� vs t at
the critical point showing the existence of kinematic waves for
n > 1. For n � 2, the solid curve passing through the minima
is a power law with exponent 2=3 and the initial tangential
straight line has a slope equal to c � 1=2. For n � 1=2, the y
axis has been scaled down by a factor of 15. The data have been
averaged over all k for both values of n.
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For � < �c, the first two terms in Eq. (4) are negligible
in the thermodynamic limit, while the integral is of order
unity so that vkin is nonzero. Because of the argument
above, we expect that the kinematic waves decay with the
KPZ exponent in this phase.

For � � �c, there is a transition in the behavior of
@�=@v as n crosses one [3]. Integrating �2

j over j, we
find that

v�1
kin��c� �

�
L�1�n�=�1�n�; n < 1;
�n� 1�=�n� 1�; n > 1;

(7)

which indicates a dynamic phase transition at n � 1 in
the thermodynamic limit. For n > 1, the kinematic wave
speed is nonzero, and we expect the universality class to
be the same as for � < �c. For n � 1, this speed is zero,
implying that the transport of density fluctuations is
anomalously slow. Thus, for n � 1, disorder is expected
to be relevant in changing the dynamical behavior from
the KPZ universality class.

For � > �c, due to the condensate at the slowest site,
the first term in Eq. (4) diverges, giving vkin � 0 for all n.
We consider the speed v0

kin in the system excluding this
site. In a typical disorder configuration, v0

kin behaves as at
the critical point, and there is a transition in the dynami-
cal behavior at n � 1. However, the disorder average of
the inverse speed v0�1

kin diverges for all n, as can be seen
using Eq. (6) in Eq. (4).

We verified the above predictions by monitoring
C�k; t� � hH2�k; t�i � hH�k; t�i2 where H�k; t� is the num-
ber of particles that hop past site k in a time interval t. In
the traffic model, C�k; t� gives the tagged particle corre-
lation which measures the mean squared displacement of
a tagged particle k around its mean position at time t. In
an infinite system, C�k; t� increases linearly with time and
the slope gives the tagged diffusion constant. In a finite
system with periodic boundary conditions, if kinematic
waves are present, C�k; t� oscillates with time period
L=vkin and its values at the minima are a measure of
the decay of the wave.

We measured C�k; t� using Monte Carlo simulations in
both the phases and at the critical point. Except at very
short times, C�k; t� is found to be independent of k, as
explained below. In Fig. 1, we show C�k; t� as a function of
time at the critical point for two values of n. For n � 2, it
is found to oscillate, with the values at minima growing
as a power law in time with exponent 2�KPZ � 2=3; at
short times, it increases linearly with slope equal to c. For
n � 1=2, there are no oscillations and C�k; t� continues to
increase linearly with slope equal to c. The tagged dif-
fusion constant is the same for all k and is equal to that of
the slowest particle for � � �c, due to the no-overtaking
constraint in the traffic model. Since the slowest particle
behaves as a free, biased random walker due to the
infinite headway in front of it, its diffusion constant
equals c for all n.
135701-3
A different sort of kinetics governs the approach to the
steady state in the condensate phase in which, starting
from a uniform density distribution, the mass profile
develops a singularity at the site with the globally mini-
mum hopping rate. In the initial stage, the particles hop
out of relatively fast sites quickly and get trapped tem-
porarily at locally slow sites. At moderately large times,
one finds a finite density of large aggregates at these slow
sites, which relax by releasing their excess mass to yet
slower sites on their right. Thus, the masses at slow sites
first grow and then decay to their respective steady state
values, except at the slowest site where the mass mono-
tonically increases and then saturates [4].

For an analytical description of the above growth
mechanism, it is useful to consider a sequence of slowly
relaxing sites on the right of the slowest site. By a se-
quentially increasing label ‘ � 1; 2; . . . , we mark the set
of sites which satisfy !‘ > !‘�1 where !‘ is the relaxation
time of ‘th such site. Denote its position by R‘; it is
evident that R‘ is a random variable which grows rapidly
with ‘. Now !‘ can be estimated by observing the follow-
ing: (i) the mass at site ‘ grows as t� till time scales of
order !‘�1, accumulating mass �m�R‘� ’ ��R‘ where
�� 	 ��� �c�, and (ii) when the excess mass has
reached the site ‘, the region to its left has relaxed to
the true steady state. At this point, the mass at site ‘
begins to decrease since the out current Jout � w�R‘�
exceeds the in current Jin � c leading to !‘ �
�m�R‘�=�w�R‘� � c�.

The growth of mass at site ‘ can be described by
considering the distribution of mass �m�R‘� at location
R‘ such that !‘ > t and !‘0 < t with ‘0 < ‘. The
probability of this event is g����R‘�=t�

Q
R‘0<R‘

�1�
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FIG. 2. Scaling collapse of the cumulative distribution in
Eq. (8) for (a) n � 1=3 and (b) n � 5=4 at t � 104 (4), 2�
104 (�), 4� 104 (+), and 8� 104 (�) in the condensate phase.
The data are obtained from the two slowest sites in 150 disorder
configurations, using c � 1=2. The broken line is a guide to the
eye. The inset shows the temporal growth of average mass as a
power law with exponent � given in the text.
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g����R‘0 �=t�� where g�u� � un�1 is the probability that
w� c < u. It follows that the cumulative distribution
F��m; t� of having mass up to �m at time t has the
scaling form

F��m; t� � 1� exp��bny
n�2�; (8)

where bn is a constant and y � �m=t� is the scaling
variable with � � �n� 1�=�n� 2�. We have dropped
the label ‘ since we expect the same growth dynamics
for all slow sites including the slowest. Further, the aver-
age mass �m1�t; L� at the slowest site at time t in a system
of size L is expected to follow the scaling form
�m1�t; L� � t�H�t=Lz� where z � 1=� is the dynamic
exponent [4]. In the traffic model, starting from a homo-
geneous initial condition, the system approaches the
steady state via a coarsening process by which headway
lengths grow. The above expression for � matches with
the growth exponent for the typical headway length ob-
tained using a deterministic model [3,10,11].
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To test Eq. (8), we numerically measured the distribu-
tion F��m; t� at the slowest and the second slowest sites
as a function of time in a large system (L� 5� 104) for
various values of n. We used slightly modified dynamical
rules since it allowed us to access longer times. We de-
termined the out current J�k; t� � w�k�s�k; t� at site kwith
occupancy probability s�k; t� at time t using the steady
state expression s�k; t� � m�k; t�=�1�m�k; t��, where
m�k; t� is the instantaneous mass at site k. The mass was
updated using this modified expression for current in the
evolution equation of m�k; t�. This is expected to be a
good approximation at large times when the system is
close to steady state, and is exact in the steady state. We
also checked these simulation results against the original
dynamics for some cases and found that the results agree.
Figure 2 shows the collapse of ln�1� F��m; t�� vs
�mn�2=tn�1 onto a linearly decreasing curve, in accor-
dance with Eq. (8), for two representative values of n.

To summarize, we studied a disordered, driven ZRP
whose dynamical properties in the steady state show a
phase transition as a function of disorder parameter n.
The relaxation dynamics, by contrast, depends smoothly
on disorder parameter. The dynamic universality class in
the steady state was shown to remain the same as for the
pure system for n > 1, while a complete characterization
of the new universality class for n < 1 remains an inter-
esting open question.
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