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Phonon Instabilities and the Ideal Strength of Aluminum
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We have calculated the phonon spectra of aluminum as a function of strain using density functional
perturbation theory for h110i, h100i, and h111i uniaxial tension, as well as relaxed h112if111g shear. In
all four cases, phonon instabilities occur at points away from the center of the Brillouin zone and
intrude before the material becomes unstable according to elastic stability criteria. This is the first time
the ideal strength of a metal has been shown to be dictated by instabilities in the acoustic phonon
spectra. We go on to describe the crystallography of the unstable modes, all of which are shear in
character. This work further suggests that shear failure is an inherent property of aluminum even in an
initially dislocation-free perfect crystal.
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eigenvectors of the dynamical matrix. The unstable ei-
genvector indicates the crystallographic nature of the

12 � 12 MP grid of k points. From this information, the
interatomic force constants were extracted and used to
The ideal strength of a material is the stress at which a
perfect crystal becomes mechanically unstable [1,2] and
sets an upper bound on the strength the material can
attain in practice. The ideal strength is also relevant
experimentally in situations which probe small, defect-
free regions of a material as in nanoindentation. In fact, it
has been demonstrated that the strengths obtained in
nanoindentation can be quantitatively computed with
the use of first principles electronic structure calculations
coupled with finite element simulations [3].

Almost all previous studies of the ideal strength have
focused on mechanical instabilities whose eigenmodes
correspond to homogeneous deformation; however, eigen-
modes corresponding to inhomogeneous deformation are
also possible [4]. For example, it is possible for a material
to become unstable with respect to vibrational modes
before it becomes elastically unstable [5]. In fact this
has been shown to be important for understanding the
anomalous hardness of TiC in relation to TiN [6,7]. In this
case, the strength of TiN is limited by the instability of an
optical phonon. This early instability decreases its
strength relative to that of TiC, which does not exhibit
this type of instability. Other prior work in this area
includes that of Li and Yip who used an empirical bond
order potential to locate phonon instabilities in SiC under
pure shear [8]. This paper provides the first example of a
simple metal in which the ideal strength is limited by
phonon instabilities.

Stability requires that the energies of phonons be posi-
tive for all wave vectors in the Brillouin zone [8,9]. A
phonon that lowers the energy of the crystal will grow
in amplitude until the structure is driven to a new
stable state. The incremental atomic displacements of
the unstable phonon mode can be determined from the
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initial instability, which may, of course, become very
different in nature as it develops finite amplitude.

In our calculations, total energies and Hellmann-
Feynman stresses were calculated using density func-
tional theory while phonon frequencies were computed
with density functional perturbation theory [10] all
within the local density approximation (LDA) [11–13].
The plane-wave pseudopotential method as implemented
within the ABINIT code [14] was used along with the
Goedecker-Teter-Hutter Al pseudopotential [13] which
required a plane-wave cutoff of 32 Ry. The ‘‘cold smear-
ing’’ method of Marzari [15] was used for Brillouin zone
(BZ) integrations with a smearing parameter of 0.04 Ry.
The total energy and stress calculations used a 16� 16�
16 Monkhorst-Pack (MP) [16] k-point grid. The error in
the stresses due to the basis set size, smearing parameter,
and k-point grid was found to be �0:1 GPa based on
convergence studies.

The quasistatic ideal strength and relaxed loading
path in the various directions was determined using a
method described in detail previously [17,18]. The lattice
vectors were incrementally deformed in the direction of
the applied stress. At each step the structure was relaxed
such that all of the components of the Hellmann-
Feynman stress tensor orthogonal to the applied stress
were less than 0.1 GPa. In order to avoid a dependence of
the quasistatic ideal strength on the loading mechanism
[19], we define the strength according to the limits of
internal stability derived by Morris and Krenn [20].

Our phonon studies employed the following method.
First, for several structures along each relaxed loading
path, an initial search for unstable modes was per-
formed by computing the dynamical matrix on a 6 � 6 �
6 MP grid of points in the irreducible BZ using a 12 �
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TABLE I. Calculated and experimental lattice parameter and
elastic constants of fcc Al. Experimental lattice parameter was
extrapolated to 4 K using low temperature thermal expansion
data [22]. Experimental elastic constants at 4 K are from
Ref. [23].

Calculated Experimental (4 K) % Error

a0 (Å) 3.98 4.02 �1:1
c11 (GPa) 117.5 114.3 2.8
c12 (GPa) 63.5 61.9 2.6
c44 (GPa) 35.5 31.6 12.3
B (GPa) 81.5 79.4 2.7

FIG. 2. Stress-strain curves for h110i, h100i, and h111i uni-
axial tension as well as relaxed h112if111g shear. Open circles
indicate the location of phonon instabilities. The lines are
guides for the eye. In all loading configurations phonon insta-
bilities occur before the material becomes elastically unstable.

TABLE II. Stresses and strains associated with phonon in-
stabilities as compared to the peak in the stress-strain curves
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interpolate the phonon frequencies [21] in order to find
unstable modes and determine their locations in the BZ.
The phonon frequencies as a function of strain were then
directly recalculated (without interpolation) along the
high symmetry directions in the BZ which exhibited
unstable modes using a 20� 20� 20 MP grid of k points
in order to obtain high accuracy frequencies (converged
to �0:1 THz). These higher accuracy frequencies were
within 1 THz of those calculated earlier, indicating that
the initial search parameters were reasonable.

Table I gives the results of benchmark calculations
which were used to check the quality of the pseudo-
potential. The lattice parameter was found to be 1% too
small while the elastic constants were 2%–12% too big
compared to experiment, typical of LDA calculations
which tend to overbind. The phonon spectra of the equi-
librium fcc structure computed using the 0 K LDA lattice
parameter is in excellent agreement with the experimen-
tal data obtained at 80 K as shown in Fig. 1.

Figure 2 presents the stress-strain curves for Al in
h110i, h111i, and h100i tension as well as h112if111g shear
(we shall discuss the details of the quasistatic loading
behavior of Al elsewhere). The open circles indicate the
locations of the phonon instabilities described below. In
each case the phonon instability occurs before the peak of
the stress-strain curve; however, in h110i tension and
h112if111g shear the phonon instabilities are located at
strains much closer to the peak than is the case in h100i
and h111i tension. This indicates that the phonon insta-
bilities in h100i and h111i tension significantly reduce the
FIG. 1. Phonon dispersion of Al measured experimentally at
80 K (open symbols) [24] and calculated using the 0 K LDA
lattice parameter (filled symbols).
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ideal strength in these directions, while the value of the
ideal strength in h110i tension and h112if111g shear is not
strongly affected by the phonon instabilities as summa-
rized in Table II. We note that our calculation of the
quasistatic ideal shear strength (3.3 GPa) is in good agree-
ment with the recent work of Yip and co-workers [25] who
obtained 2.84 GPa using the generalized gradient ap-
proximation (GGA) and reported that the LDA produced
strengths 10%–20% higher. (As noted in Ref. [25], this
value is significantly larger than the first calculation of
the ideal shear strength of Al [18,26].) Although the
stresses resulting from the LDA and GGA differ, we
find that the strains corresponding to the ideal strength
and the associated stress-free saddle point structures are
not as sensitive to the gradient corrections. Since the
phonon instabilities described below appear to be deter-
mined by critical strains [27], we expect that the GGA
would produce results similar to our LDA calculations in
terms of the instability strain while producing lower
stresses at the corresponding strains. As such, the LDA
results serve as a more conservative upper bound on the
strength.

The phonon spectra are shown as a function of strain in
Figs. 3–5. We have included only the high symmetry
shown in Fig. 2. Also shown are the shear plane and displace-
ment associated with the phonon instabilities.

Phonon Peak stress-
Loading instability strain curve Shear system

configuration � (GPa) e � (GPa) e of instability

[110] tension 4.89 0.115 4.92 0.140 �112	
111�
�112	
111� shear 3.16 0.145 3.33 0.185 �112	
111�
[001] tension 9.20 0.170 12.92 0.340 [001](100)

�110	
111�
[111] tension 8.95 0.150 11.30 0.330 [111](001)

[111](110)
�111	
110�
�111	
111�
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directions in the Brillouin zone along which phonon
instabilities were found to occur. Also, only the branch
corresponding to the polarization which goes unstable is
shown to simplify the figures. For convenience we use the
negative y axis to plot imaginary frequencies. In general
we see the softening of various phonon branches occur-
ring gradually as the strain is increased. At the largest
strains, the initial slope of the dispersion curves is nega-
tive. When this happens the material is unstable with
respect to homogeneous deformation (long wavelength
distortions) and is thus elastically unstable.

In Fig. 3(a) we see that in [110] tension a phonon
instability develops around 11% strain. At this strain,
the instability has a �111	=3 wave vector, but larger
wave vectors quickly become unstable as the strain is
increased slightly. Analysis of the eigenvectors of the
dynamical matrix indicates that the unstable mode cor-
responds to displacements in approximately the �112	
direction. Thus the failure is a �112	
111� shear failure
in which the displacements have a periodicity of 3 (111)
planes. Interestingly, this periodicity is commiserate with
the ABCABC stacking of the (111) planes found in the fcc
structure.

In the case of an applied �112	
111� shear, the insta-
bility first occurs at a wave vector between �111	=3 and
�111	=2 at an engineering shear strain of 14% [Fig. 3(b)].
The unstable mode has displacements in the �112	 direc-
tion resulting in a �112	
111� shear failure with a period-
icity of 2 or 3 (111) planes. Independent frozen phonon
FIG. 3. Phonon frequencies as a function of strain for
(a) [110] tension and (b) �112	
111� shear. The curves are
labeled according to the applied strain as indicated on the right
side of the figure. Lines are spline fits which are guides to the
eye. In both cases the crystallography of the instability is the
same. A schematic illustrating the zone edge instability is
shown in (c).
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calculations confirmed the existence and location of the
instability at 14% applied shear strain.

The geometry of the instability that occurs in h110i
tension is identical to that found in h112if111g shear
[Fig. 3(c)]. This is probably because h110i tension can
be visualized as a superposition of h112if111g shear and
an expansion perpendicular to the shear plane. The two
deformation modes also produce very similar elastic
instabilities. On further deformation both loading con-
figurations eventually produce the same stress-free body-
centered-tetragonal structure (which is a saddle point on
the energy-strain hypersurface).

A different type of instability is found in [001] tension.
In this case instabilities occur with wave vectors in two
separate regions of the Brillouin zone. At around 17%
strain an instability occurs at �111	=2 followed by an-
other at around 18% near 2�100	=3. We find that the
displacements in the two cases correspond to periodic
�110	
112� shear and [001](100) shear, respectively. A
schematic of the crystallography of these instabilities is
shown in Fig. 4(b). Increased strain causes the region of
unstable wave vectors to grow significantly until the
material becomes elastically unstable at strains that cor-
respond to the peak of the stress-strain curve.

Of the four loading configurations studied, the elec-
tronic origin of this instability is the most clear. At the
strain corresponding to the phonon instability the bottom
of the second band at the X point ([100] direction) has
increased to the extent that it has reached the Fermi level
and thus has been depopulated [Fig. 4(c)]. This can also be
FIG. 4. (a) Phonon frequencies as a function of strain for
[001] tension. (b) Schematic of the instabilities. (c) Band struc-
ture for 0% (dashed line), 10% (dot-dashed line), 20% (solid
line) strains. Coordinates of symmetry points in units of 2
=a,
X � 
100�; Z � 
001�; P � 
a=2c�; X0 � 
a=c�. At the in-
stability strain (� 20%), the bottom of the second band at the
X point reaches the Fermi level as emphasized by the arrows.
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FIG. 5. Phonon frequencies as a function of strain for [111]
tension. At 20% strain, the initial slope in the �110	 direction
becomes imaginary indicating that the crystal is elastically
unstable.
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seen by examining the Fermi surface. As the crystal is
strained in the [001] direction the extent of the intrusion
of the Fermi surface into the second zone in the [100] and
[010] directions decreases. At the strain which corre-
sponds to the phonon instability this pocket of electrons
completely vanishes, destabilizing the structure. A simi-
lar though less dramatic event occurs during [110] tension
at the strain corresponding to the phonon instability

Finally, the case of [111] tension is the most complex.
Phonon instabilities develop along four different high
symmetry directions. In all cases, the phonons first be-
come unstable between 15% and 17.5% strain. Analysis of
the eigenvectors of the dynamical matrix leads to the
result that all the phonon instabilities are shear in char-
acter with atomic displacements in the [111] direction
but with different shear planes as shown in Table II. We
also note that around 20% strain the long wavelength
wave velocity becomes imaginary in the �110	 direction.
This indicates the material is elastically unstable. By
computing the elastic constants as a function of strain
along the loading path we have been able to locate the
same elastic instability using the conditions of internal
stability [20]. This instability is orthogonal to the loading
direction and is thus not revealed by the relaxed stress-
strain curve.

For the four cases studied here we have shown that even
in tensile loading the failure mode of Al is shear in
nature. Al is known to be ductile even at low temperatures
and does not exhibit cleavage fracture. This is consistent
with our results which further suggest that shear failure is
an inherent property of Al even in an initially disloca-
tion-free perfect crystal.
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