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Kelvin-Wave Cascade on a Vortex in Superfluid 4He at a Very Low Temperature
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A study by computer simulation is reported of the behavior of a quantized vortex line at a very low
temperature when there is continuous excitation of low-frequency Kelvin waves. There is no dissipation
except by phonon radiation at a very high frequency. It is shown that nonlinear coupling leads to a net
flow of energy to higher wave numbers and to the development of a simple spectrum of Kelvin waves
that is insensitive to the strength and frequency of the exciting drive. The results are likely to be relevant
to the decay of turbulence in superfluid 4He at very low temperatures.
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stances Kelvin waves of a particular low frequency can tions), and it is not yet generally accepted that a
It is well known that quantized vortices can be formed
in superfluid 4He. Such vortices can support a transverse
and circularly polarized wave motion (a Kelvin wave),
with the approximate dispersion relation for a rectilinear
vortex [1]
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where � is the quantum of circulation �h=m4�, a is the
vortex core parameter, and c� 1. The existence of these
waves in an inviscid fluid was first discussed as a theo-
retical possibility in the 19th century [2], but an experi-
mental study in a fluid without viscosity had to await the
discovery of quantized vortices in superfluid 4He. Kelvin
waves in uniformly rotating superfluid 4He were first
observed experimentally by Hall [3], and a number of
interesting experimental and theoretical studies have been
published subsequently; see, for example, Glaberson et al.
[4] on an instability in the presence of an axial flow of the
normal fluid; and the study of nonlinear effects, leading
to soliton behavior [5] and to an associated sideband
instability [6]. Nonlinear effects remain interesting, and
an aspect of them that is important in our understanding
of Kelvin waves at very low temperatures, and which may
be of rather general interest in nonlinear dynamics, is
discussed in this Letter.

At temperatures where there is a significant fraction of
normal fluid, Kelvin waves in superfluid 4He are damped
by mutual friction, which is the frictional force exerted
on a vortex when it moves relative to the normal fluid.
This Letter is concerned with the expected behavior of
Kelvin waves at very low temperatures, when damping
due to mutual friction can be neglected. Under these
conditions Kelvin waves can be damped only by radiation
of phonons, but the damping is expected to be extremely
small [7] unless the frequency is very large, typically of
the order of 4 GHz (k� 2 nm�1). Kelvin waves of lower
frequency are essentially undamped. In these circum-
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lose energy only by nonlinear coupling to waves of a
different frequency. We are led therefore to consider the
following situation. Suppose that we have a rectilinear
vortex of finite length, and that we continuously drive one
low-frequency Kelvin mode on this vortex. The mode will
grow in amplitude, until nonlinear effects give rise to a
transfer of energy to other modes, particularly at higher
frequencies. This process will presumably continue until
modes are excited that have a frequency sufficiently high
for effective phonon radiation. The aim of this Letter is to
predict the details of this process, by means largely of
computer simulations. We shall consider, for example,
whether there is a steady state, in which energy is injected
at a low frequency and dissipated by phonon emission at a
high frequency, and whether there is some well-defined
and simple spectrum of the Kelvin waves existing in this
regime.We shall regard this regime as a cascade, although
we are not sure whether it is a strict cascade in the sense
that energy is transferred in steps to higher wave num-
bers.We shall find that a well-defined spectrum does seem
to exist, that it is simple in form, and that it is remarkably
insensitive to the amplitude and frequency of the drive.

This behavior is interesting in its own right. However,
we ourselves were led to investigate it by an interest in the
decay of turbulence in superfluid 4He at very low tem-
peratures [8], where mutual friction has a negligible
damping effect on vortex motion. As in classical turbu-
lence, energy in superfluid turbulence must probably flow
from larger to smaller length scales, and it has been
suggested that on the smallest scales the relevant motion
is a Kelvin wave on a vortex with wave number greater
than the inverse vortex spacing. It is then of interest to
understand how energy can flow in a system of Kelvin
waves toward higher wave numbers, where it can ulti-
mately be dissipated at the highest wave number by
phonon radiation. In the context of superfluid turbulence
the details are likely to be quite complicated (Kelvin
waves are likely to be generated by vortex reconnec-
2003 The American Physical Society 135301-1
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FIG. 1. The development in time of the total length of the
vortex line.
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Kelvin-wave cascade is strictly necessary. Nevertheless it
seems likely that such a cascade has a significant role.
These matters have been discussed in a recent review [8],
and we plan further discussion in forthcoming papers.

We believe that the behavior we find may exist also in
other types of systems and may therefore have other
applications. It should be explained that similar problems
to that discussed here have been addressed by other au-
thors [9–12], but they relate to situations that are signi-
ficantly different, for example, where there is no steady
state or where the length of vortex line is constrained
not to increase. Thus Araki and Tsubota [11] carried
out numerical simulations on an initial configuration
in which a vortex ring approaches a rectilinear vortex,
Kelvin waves being generated by reconnections when
collision takes place. There was no steady input of energy
and no obvious dissipation. The numerical simulations of
Kivotides et al. [10] related to an initial configuration of
four vortex rings, Kelvin waves again being generated by
reconnections when the rings collide. Again there was no
steady input of energy and no obvious dissipation. In both
these simulations the authors found some evidence for the
development of a spectrum similar to Eq. (6), although
the situation is obviously different from that considered
in this Letter. The computational work of Nemirovskii
et al. [12] did deal with a steady state in which waves on a
vortex ring were generated by low-frequency noise,
although the total length of line was kept artificially
constant; the results suggested the existence of a spec-
trum similar to Eq. (3), although it did not exhibit the
insensitivity to the driving conditions that we ourselves
find. Generally, then, it seems that this other work has not
led to such simple and clearcut results as we report in this
Letter, and, as we shall discuss in later papers, it may be
less relevant to the decay of superfluid turbulence, espe-
cially when, as is often likely to be the case [8], energy
flows from a large reservoir associated with large-scale
quasiclassical turbulent motion into motion on a scale less
than the vortex line spacing.

We consider a model system in which the helium is
contained in the space between two parallel sheets, sepa-
rated by distance ‘B � 1 cm, with a single, initially recti-
linear, vortex stretched between opposite points on the
two sheets. Kelvin waves can be excited on this vortex,
and periodic boundary conditions are applied at each end.
Thus the allowed wave numbers of the Kelvin waves are
given by

k �
2�n
‘B

; (2)

where n is an integer �> 0�. We imagine that one of
these modes, with n equal to a small integer n0, is con-
tinuously driven, so that its amplitude tends continu-
ously to increase. As the amplitude increases nonlinear
coupling to other modes sets in, and we can expect
energy to flow from the mode n0 to other modes,
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with both larger and smaller wave numbers. Now we
introduce a suitably strong damping for all modes with
n exceeding a large critical value nc. This is intended to
mimic the effect of phonon emission, although, because
of inevitable computational limitations, it is occurring at
a much smaller frequency. Then we ask whether there is a
steady state, described by an energy spectrum Ek, in
which the energy input to the mode n0 is balanced by
dissipation in the modes with n > nc. We find that such a
steady state does seem to exist, and we determine the
character of the corresponding energy spectrum. We ob-
serve no reconnections.

An important feature of the model lies in the fact that
Kelvin modes with wave numbers less than 2�=‘B cannot
be excited, so that energy cannot flow to smaller and
smaller wave numbers. The relevance of this feature to
the decay of superfluid turbulence will be discussed in a
later paper.

The simulations are based on the vortex filament
model, and they are similar to those described by
Schwarz [13] and used in more recent work by one of
the authors [14]. The undisplaced vortex lies along the z
axis. Its calculated motion is based on the full Biot-Savart
law and therefore takes account of both local and non-
local contributions. The force that drives one mode is of
the form V�� sin�k0z�!0t�, where k0 � 2�n0=‘B, � is
the density of the helium, and !0 is related to k0 by the
dispersion relation (1). Damping at the highest wave
number allowed by the resolution of the simulations
(1=60 cm) is applied by a periodic smoothing process,
the details of which will be described in a later publica-
tion; this allows an effective dissipation at the highest
wave number that can adapt to the flux of energy through
k space arising from the drive.

Figure 1 shows how the total length of line evolves in
time after application of the driving force. We see that it
135301-2
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reaches a steady average value, suggesting the existence
of a steady state.

We express our more detailed results in terms of the
root mean square amplitudes ���k�t� � h��k �ki

1=2 of the
Fourier components of the displacement of the vortex.
Figure 2 shows how these amplitudes develop in time
after the application of a drive with V � 2:5

10�5 cm s�1 and k0 � 10� cm�1. We see that initially
only the mode that resonates with the drive is excited.
However, as time passes, nonlinear interactions lead to
the excitation of all other modes. Eventually the spectrum
reaches a steady state, shown by the solid line, and there is
then no further change. In this steady state energy is
injected at a certain rate at the wave number k0, and it
is dissipated at the same rate at the highest wave number.
For large values of k, where the modes form practically a
continuum, the steady state is observed to have, to a good
approximation, a spectrum of the simple form

��� 2
k � A‘�1

B k�3; (3)

where the dimensionless parameter A is of order unity.
Figures 3 and 4 show the effects, respectively, of in-

creasing the drive amplitude V by a factor of 10 and of
changing the drive wave number k0. We see that there is
no effect on the steady state, within the error of the
simulations, at least at the higher wave numbers. The
steady state takes longer to be established at the lower
drive amplitude, which suggests that even with a small
drive amplitude the same steady state would be estab-
lished after a sufficiently large time, but limitations on
the time available for a simulation have not allowed us to
check this suggestion.
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FIG. 2 (color online). Time development of ���k�t�. The short-
dashed line, the dash-dotted line, the dotted line, the long-
dashed line, and the solid line refer, respectively, to averages
over 0–800, 10 000–10 800, 20 000–20 800, 40 000–40 800,
and 140 000–140 800 s. The solid line relates to the steady state.
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Important questions relate to the relationship between
the drive amplitude and the power input to the system of
Kelvin waves. For small times after the drive is first
established nonlinearities in the system are relatively
unimportant, and the power input can be calculated
from the product of the drive amplitude and the ampli-
tude of the velocity response at wave number k0, taking
proper account of phase differences. For later times,
however, the system exhibits very strong nonlinear be-
havior, and this simple technique is no longer applicable.
Energy seems to be injected through processes involving
two wave vectors, the difference between which is equal
to k0. Therefore we have not yet been able to calculate how
the power input varies with the drive amplitude, although
we hope to do so later. Careful analysis of the operation of
damping in our model for large wave numbers might
allow us to obtain the rate of dissipation of energy, but
we have not yet completed this analysis. For the present
we can only make the reasonable assumption that an
increase in the drive amplitude does increase the power
input. We can conclude with some confidence, therefore,
that the spectrum is insensitive to the drive amplitude,
the drive frequency, and the power input from the drive.

The mean energy per unit length of vortex in a mode k
is related to ���k by the equation

Ek � �Kk
2 ���2k; (4)

where �K is an effective energy per unit length of vortex,
given by

�K �
��2
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�
: (5)

It follows from Eqs. (3) and (4) that
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FIG. 3 (color online). Steady-state values of ���k�t� for two
different drive amplitudes. The solid line and the dotted line
are for, respectively, V � 2:5
 10�5 cm s�1 and V � 2:5

10�4 cm s�1. The long-dashed line has the form of Eq. (3).
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FIG. 4 (color online). Steady-state values of ���k�t� for drives at
three different wave numbers. The dotted, short-dashed, and
solid lines refer, respectively, to k0 � 2� cm�1, k0 � 4� cm�1,
and k0 � 10� cm�1. Again the long-dashed line has the form
of Eq. (3).
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Ek � A�K�k‘B�
�1: (6)

We conclude that in our model system a steady state
cascade does develop, that this state is characterized by
the energy spectrum (6), and that, remarkably, this spec-
trum is insensitive to the frequency and amplitude of the
drive and to the power input at the drive frequency.

It is interesting to ask what physics underlies this result.
We suggest that, in the steady state and for waves of wave
number of order k, there is a saturation in the local
amplitude of the Kelvin waves at a value of roughly
k�1; this arises from a sudden onset of strong nonlinear
effects when the amplitude is of the order of the wave-
length. We make the reasonable assumption that the total
mean square amplitude of the displacement of the vortex
is independent of the length (‘B) of the vortex. The
spectrum (3) must then be proportional to ‘�1

B . Our
assumption about the sudden onset of nonlinear effects
means that the only other parameter on which this spec-
trum can depend is k. The form (3) then follows from a
dimensional argument. We propose now to investigate
whether this type of behavior can be found in other forms
of wave propagation, at least if they have the same types
of dispersive and nonlinear characteristics (which are
known to lead to soliton behavior [5]).

As far as we are aware, there are as yet no experimental
results that relate directly to the behavior of Kelvin waves
in superfluid 4He at very low temperatures. Such experi-
ments, which might involve the excitation of Kelvin
waves on the regular array of vortices existing in the
uniformly rotating liquid, as in the early experiments of
135301-4
Hall [3], would be of great interest. Measurements might
be made of the rate at which energy is transmitted to the
array from a suitable transducer, and of the rate at which
energy eventually appears as heat after the Kelvin-wave
cascade has been established.

In summary we have reported the results of com-
puter simulations of the behavior of Kelvin waves on a
rectilinear quantized vortex of finite length in superfluid
4He at a temperature so low that the waves suffer no
attenuation from mutual friction with the normal fluid,
the only attenuation arising from phonon radiation at a
very high frequency. The waves are excited by continu-
ously driving the system at a small wave number. The
amplitude of the driven mode increases until nonlinear
coupling leads to a transfer of energy to all other modes.
A steady state is established, described by a simple energy
spectrum, the form of which is remarkably insensitive to
the strength and other details of the drive.
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