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Why Are Chaotic Attractors Rare in Multistable Systems?
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We show that chaotic attractors are rarely found in multistable dissipative systems close to the
conservative limit. As we approach this limit, the parameter intervals for the existence of chaotic
attractors as well as the volume of their basins of attraction in a bounded region of the state space shrink
very rapidly. An important role in the disappearance of these attractors is played by particular points in
parameter space, namely, the double crises accompanied by a basin boundary metamorphosis. Scaling
relations between successive double crises are presented. Furthermore, along this path of double crises,
we obtain scaling laws for the disappearance of chaotic attractors and their basins of attraction.
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Many processes in nature do not possess only one long-
term asymptotic state or attractor but are rather charac-
terized by a large number of coexisting attractors for a
given set of parameters. This phenomenon, called multi-
stability, is found commonly in many fields of science
such as neuroscience [1], chemistry [2], optics [3], and
condensed matter physics [4].

We consider a general class of smooth nonlinear dy-
namical dissipative systems which are obtained by taking
the conservative limit and adding a small amount of
dissipation. Physicists have been commonly studying sys-
tems in which the dynamics is either strongly dissipative,
such as the Hénon map, or conservative, such as the
Hamiltonian systems. But in practice, the systems are
more often neither strongly dissipative nor conservative,
but they are somewhere in between, i.e., weakly dissipa-
tive, as addressed in this Letter. Usually such systems
possess many coexisting attractors depending on two con-
trol parameters, where one of them can be regarded as a
forcing (nonlinearity) and the other one as a damping.

For a given damping, the forcing controls the bifurca-
tion sequence of each individual attractor. In general,
these attractors appear through a saddle-node bifurca-
tion; they then undergo a period-doubling cascade that
ends up in chaos. The chaotic attractor is destroyed in a
boundary crisis [5] in which the attractor collides with an
unstable periodic orbit on the boundary of its basin of
attraction.

If we fix the forcing but vary the damping, we can
change two properties of the system: first, the number of
coexisting attractors and, second, the length of the pa-
rameter intervals for which the attractors are chaotic. For
strong damping, there exists typically only one bounded
attractor in a wide range of the parameter space.
Moreover, the parameter interval in which this attractor
is chaotic is rather wide and interspersed with periodic
windows. But the behavior close to the conservative limit,
with small damping, is more involved. Since the number
of coexisting attractors scales as one per damping [6,7],
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this number can be made arbitrarily large by choosing a
small damping. Among this large number of coexisting
attractors, most are periodic and none or very few are
chaotic. Additionally, if they happen to be chaotic, their
existence is limited to extremely tiny parameter intervals.
An important question arising from our studies of multi-
stable systems is the following: how prevalent are chaotic
attractors in parameter space?

The aim of this Letter is to show that chaotic attractors
are rare in multistable systems. As a main result, we show
that chaotic attractors disappear for two reasons as we
approach the conservative limit. First, the existence in-
tervals in parameter space shrink geometrically with the
Feigenbaum constant for conservative systems. Second,
their basins of attraction in a bounded region of the state
space shrink exponentially as the damping approaches
zero. For a special path in parameter space, which corre-
sponds to double crises accompanied by a basin boundary
metamorphosis [8], we obtain scaling laws for the dis-
appearance of chaotic attractors and their basins of at-
traction. The explanation of the suggested scaling along
this particular path in parameter space involves many
different phenomena which we describe next using a
generic example for an illustration.

To demonstrate the disappearance of chaotic attractors
in multistable systems, we use the Hénon map as a para-
digm:

Xn+1 = A - x% - (1 - v)yn’ Yn+1 = Xp- (1)
This system possesses two parameters. The nonlinearity
parameter A (forcing) represents the bifurcation or con-
trol parameter. The damping parameter v varies between
0 (conservative limit) and 1 (strong damping).

While for » = 1 there exists one chaotic attractor in a
wide range of the parameter A, there are several coexist-
ing periodic and chaotic attractors for values of v close to
the no damping limit » = 0. Since all these attractors
evolve in the same generic manner, it is sufficient to study
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the bifurcation sequence of one of those attractors. We
focus on the attractor with the biggest interval of chaotic
behavior and the biggest basin of attraction.

To address the question of parameter intervals for the
existence of chaotic attractors in weakly dissipative sys-
tems, we consider the bifurcation structure in the two
parameter space spanned by forcing and damping. We
measure the extension of the chaotic region with respect
to the forcing parameter A as the damping v varies. For
a given v value, we define the chaotic region as being
bounded by the accumulation point of the period-
doubling cascade Ay (Feigenbaum point) where the cha-
otic attractor appears and the value A, at the boundary
crisis, where the chaotic attractor disappears. Of course
we understand that apparently there is a dense set of
periodic windows embedded in the chaotic region. As
shown in Fig. 1, the length of the chaotic region
AAaos = A — Ap asymptotes to zero as we decrease
the damping towards the conservative limit. There are
points along the curve AA ., in which the derivative of
the curve is discontinuous. These vertices vy, vy,...,
v;, ... denote special points in parameter space corre-
sponding to double crises [8], where k — o as v — (.
Such a double crisis is characterized by a simultaneous
occurrence of a boundary crisis, where the chaotic attrac-
tor touches its basin boundary, and an interior crisis,
where the attractor changes suddenly its size. For the
same parameter value a metamorphosis of the basin
boundary takes place, where a sudden enlargement of
the fractal structure of the basin boundary is observed.

Let us discuss the question of the existence of chaotic
attractors in a given parameter interval from another
point of view. The probability of finding a chaotic attrac-
tor in a multistable system does not depend only on its
abundance in parameter space, but it depends also essen-
tially on the size of the basin of attraction for a given
parameter set. Thus the question arises, how often is a
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FIG. 1. Length of the chaotic interval for the Hénon map
depending on the damping v: AAg,es Vs (1 — v). For a better
representation we have chosen (1 — v) as the abscissa. With this
choice, (1 —») =0 corresponds to a strong damping and
(1 — ») = 1 corresponds to the conservative limit.
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particular chaotic attractor reached by trajectories started
with random initial conditions compared to other attrac-
tors? Since all basins of attraction share the same state
space, we have to consider the relative size of the basin of
attraction in relation to all occurring attractors. Thus, we
define the size of the basin of attraction of one attractor as
the number of initial conditions which converge to that
particular attractor divided by the total number of initial
conditions taken into account. To compute this quantity
we have chosen a grid of [1000 X 1000] points in the
rectangle [—3,3] X [—3,11] in state space. This choice
ensures that all occurring attractors (except for the one at
infinity) are localized in this rectangle. We have com-
puted the basin size of the only chaotic attractor along the
line of boundary crisis points A, in the parameter space
(A, v). As shown in Fig. 2, we obtain a rapid decrease in
the basin size of the chaotic attractor as we approach the
conservative limit. Again there are vertex points in which
the curve is nondifferentiable. The basin size decreases
exponentially between any two successive vertex points.
Both results, the computation of the existence intervals
for chaotic attractors in parameter space as well as the
computation of the size of the basins of attraction, yield
the result that chaotic attractors in multistable systems
“disappear” as we lower the damping. Qualitatively the
same behavior appears for all attractors in the system.
Towards the conservative limit, the length of the exis-
tence interval of a chaotic attractor as well as the size of
its basin of attraction shrink down to zero. To obtain
scaling relations about how fast the existence intervals
and the basins, respectively, shrink to zero, we look at a
particular path in the two-dimensional parameter space
which is given by the vertices of the double crisis
V{, Uy, .... The double crisis at vy does not fit to the
scaling laws presented below, since at that point not all
dynamics changes in the same way as for all other vertex
points.

To get further insight into a double crisis vertex, let us
look at one of them, say v, in more detail: At this point
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FIG. 2. Size of the basin of attraction for the chaotic attractor
computed along the line of boundary crisis A, (right before
Ag) vs (1 — v).
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FIG. 3. Sketch of the bifurcation lines in the vicinity of a

double crisis point: (a) interior crisis line, (b) basin boundary
metamorphosis line, and (c¢) and (d) boundary crisis line.

four different bifurcation lines meet (Fig. 3). What hap-
pens dynamically as one crosses those lines?

When we cross the interior crisis line [line (a) in Fig. 3],
there occurs a sudden change (increase or decrease de-
pending on the direction) in the size of the attractor. In
this particular case, the number of pieces of the attractor
changes, above the line (a) there is a one-piece attractor,
while below this line there are two pieces. The conse-
quence of this interior crisis is that, along the subsequent
boundary crisis lines (¢) and (d), the number of attractor
pieces involved in the boundary crisis changes at v.

Crossing the basin metamorphosis line (), the fractal
structure of the basin boundary changes [9]. This tran-
sition is accompanied by a change in the unstable periodic
orbit located in the basin boundary that is accessible from
the interior of the basin of the chaotic attractor [10]. As a
consequence of the basin metamorphosis, the unstable
periodic orbit with which the attractor collides at the
boundary crisis changes. On the left of line (b), the
accessible orbit on the boundary is of period 3, while on
the right of line (b) it is of period 6. Because of the
intersection of the interior crisis line (a) and the basin
boundary metamorphosis line (b) at the double crisis
point v, the two boundary crisis lines (c) and (d) exhibit
a different boundary crisis. Crossing the boundary crisis
line (c), the one-piece attractor collides with an unstable
period-3 orbit in the basin boundary, while crossing the
boundary crisis line (d) the two-piece attractor collides
with an unstable period-6 orbit.

In general, as we increase k towards the conservative
limit, we obtain the following changes in going from
vertex v, to vertex v,.;: (i) change in the number of
attractor pieces involved in boundary crisis: 27! — 2k
and (ii) change in the period of the unstable periodic orbit
involved in the boundary crisis: p X 2871 — p X 2K,
where p is the period of the unstable periodic orbit
involved in the boundary crisis at v;. Furthermore, along
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this special path in parameter space, going from the
vertex v, to v;y, various scaling laws describing the
disappearance of chaotic attractors can be formulated.

Figure 1 verifies that the damping values at the vertex
points obey the following scaling law, while approaching
the conservative limit lim;_,.,(1 — »;) = 1 [11]:

k=12.... 2)

On the other hand, the scaling of the length of chaotic
intervals in parameter space along this path of vertices, as
we approach the conservative limit k — oo, is

L= v =1 -

lim Achaos, k

= 0, (3)
k—o0 AAchaos,k+l "

where 6 = 8.72, corresponding to the Feigenbaum con-
stant in the conservative case.

Figure 2 shows the characteristic changes in the slope
of the exponential decrease in the size of the basin of the
chaotic attractor between successive vertices. Let us de-
note the size of the basin of attraction at vertex v, in a
bounded region by Bj. Then the slope between two ver-
tices scales as

1an+1 - lan
1- Vk+1) - (1= Vk)

with C constant. A Taylor expansion of (2) for v, — 0
yields v, = v;/2 and thus v, ~ A2~ with A = const.
This results in limy_q In(B;.;/By) = —AC = —const.
Thus the size of the basin decreases exponentially be-
tween vertices. To illustrate this drastic drop in the basin
size, we show the basins of attraction of the chaotic
attractor at the first two vertices v and v, in Figs. 4(a)
and 4(b).

It is important to note that the changes in the basin size
are a direct consequence of the basin metamorphosis
which happens at each vertex. It could be argued that
the changes in the slope at the vertex points are due to
the fact that we calculate the size of the basin along the
boundary crisis line, which itself already contains the
vertices. To check the mechanism for the changes in
the slope, we have computed the size of the basins of
attraction also along the line of Feigenbaum points Ap,
which is a smooth curve in parameter space with no
points of nondifferentiability. The obtained curve for
the size of the basins along the line Ay looks qualitatively
the same as shown in Fig. 2 including the occurrence of
points of nondifferentiability and changes in the slopes
between them. But these points of nondifferentiability are
not identical with the vertices in Fig. 2; they correspond
to the intersections of the basin boundary metamorphosis
line with the Feigenbaum line. Thus the change in the
slope of the exponential decrease of the basin size is
connected with the crossing of a line of basin boundary
metamorphosis.

We arrived at the two scaling relations (3) and (4)
numerically. However, the renormalization group ap-
proach about the accumulation point of period doublings
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FIG. 4. Basin of attraction of the chaotic attractor in the
Hénon map at two successive vertices (double crisis points):
(a) at vy with A; =2.330122, »; = 0.55781; (b) at v, with
A, = 2.92666, v, = 0.335026 32. The white dots indicate ini-
tial conditions which converge to the chaotic attractor; the grey
dots indicate initial conditions which converge to other attrac-
tors. The attractor itself is shown in black.

in area-preserving two-dimensional maps yields two
scaling constants from the eigenvalues A of the renormal-
ization transformation: one of them is A; = 8 for per-
turbations retaining the map inside the area-preserving
class and the other one is A, = 2 resulting from dissipa-
tion. This result is universal and holds for the class of
dissipative maps possessing a period-doubling cascade
and having a conservative limit [12]. The same arguments
apply to the universality of the scaling relations (2) and
(3), while (4) cannot be proved using a renormalization
group approach due to the difficulties to quantify the size
of the basins of attraction.

We conclude that chaotic attractors are not very com-
mon in weakly dissipative systems. With decreasing
damping, the size of the basins of the chaotic attractors
shrinks rather quickly, so that the chaotic attractors have
difficulty to grow in state space. As soon as they are
created, the attractors already collide with the boundary
of their basin of attraction. As a consequence the exten-
sion of the chaotic region in parameter space decreases
with decreasing damping. This behavior is even more
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pronounced, if the chaotic attractor under consideration
has developed from an attractor with a higher period than
1 at the saddle-node bifurcation. Therefore, we expect
chaotic attractors to be rarely observed in experimental
weakly dissipative multistable systems exhibiting a mul-
titude of attractors. Nevertheless, this does not mean that
there is no chaos in such systems. Chaos shows up as long
chaotic transients that are the signature for the existence
of chaotic saddles which in this case are embedded in the
basin boundaries of the mostly periodic attractors. In the
conservative limit, the chaotic attractors in the considered
system class disappear; their existence intervals as well
as their basins shrink down to zero. The permanent chaos
in the conservative limit of two-dimensional invertible
maps appears to be connected only with the chaotic
motion on chaotic saddles embedded in the basin bounda-
ries in the dissipative case. Such scalings are also present
in other diffeomorphic transformations such as the Ikeda
map. How this result can be generalized to higher dimen-
sional systems possessing Arnol’d diffusion in the con-
servative limit is still an open and intriguing question.
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