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Negative Lateral Shift of a Light Beam Transmitted through a Dielectric Slab
and Interaction of Boundary Effects
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It is found that when a light beam travels through a slab of optically denser dielectric medium in air,
the lateral shift of the transmitted beam can be negative. This is a novel phenomenon that is reversed in
comparison with the geometrical optic prediction according to Snell’s law of refraction. A Gaussian-
shaped beam is analyzed in the paraxial approximation, and a comparison with numerical simulations
is made. Finally, an explanation for the negativity of the lateral shift is suggested, in terms of the
interaction of boundary effects of the slab’s two interfaces with air.
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electric field of a Fourier component of the incident beam,
where ~kk � �kx; ky� � �k cos�; k sin��, k � �"0�0!
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FIG. 1. Schematic diagram of a light beam propagating
through a slab of denser dielectric medium in the air.
Light is reflected and transmitted at dielectric inter-
faces. It is well known that the totally reflected light
beam is laterally shifted from the position predicted by
geometrical optics. This phenomenon is referred to as
the Goos-Hänchen (GH) shift [1,2]. The investigation
of the GH shift has been extended to the partial reflec-
tion regime [3–9] and to other areas of physics, such as
acoustics, quantum mechanics, plasma physics, nonlinear
optics [2], and surface physics [10]. There have also been
papers dealing with negative GH shifts in reflection in
some complicated circumstances such as negative-
permittivity media [11,12], absorptive media [13–16],
and negatively refractive media [17]. Apart from the
lateral shift, the reflected beam may also undergo a focal
shift, angular shift, and beam-waist modification [3,9]
with respect to the prediction of geometrical optics. The
behavior of the transmitted beams did not draw as much
attention as those of reflected beams. Hsue and Tamir [4]
once discussed the lateral shift of a transmitted beam
in a transmitting-layer configuration. But they concluded
that it is always shifted in a forward direction. The
main purpose of this Letter is to report a novel phenome-
non of a transmitted beam through a dielectric slab in
air, the negative lateral shift from the position predicted
by geometrical optics, according to Snell’s law of refrac-
tion. It is shown at the same time that the lateral shift of
the reflected beam can also be negative in this simple
configuration.

For simplicity, we consider a nonmagnetic dielectric
slab in air. Denote by a, ", and n the thickness, dielectric
constant, and refractive index of the slab, extending
from 0 to a, as is shown in Fig. 1. A two-dimensional
(@=@z � 0) light beam of TE polarization (TM polariza-
tion can also be discussed in the same way) and of angular
frequency ! comes from the left with an incidence angle
�0 specified by its axis. Let Ein� ~xx� � A exp�i ~kk � ~xx� be the
0031-9007=03=91(13)=133903(4)$20.00 
where � denotes the incidence angle of the contri-
buted plane wave, and time dependence exp��i!t� is
implied and suppressed. The corresponding Fourier com-
ponent of the transmitted electric field is determined
by Maxwell’s equations and boundary conditions to be
Et� ~xx� � TA expfi�kx�x� a� � kyy	g, where the phase
’ � ’�ky� of the transmission coefficient T � T�ky�
and the reciprocal 1=jTj of its absolute value are, re-
spectively, the phase and norm of complex number
cosk0xa�
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(1)

k0x � k0 cos�0, k0 � �"�0!
2�1=2, �0 is determined by

Snell’s law, n sin�0 � sin�, and int(.) means the integer
part of involved number. Since " > "0, �0 < �, we know
that k0x > kx.

When measured in the same way as the lateral shift of
reflected beam as is indicated in Fig. 1, the lateral shift of
transmitted beam is defined as �d’=dky [18,19] and is
given here by
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0 � sin2k0x0a

; (2)

where kx0 � k cos�0, ky0 � k sin�0, k0x0 � k0 cos�00, �
0
0 is

determined by n sin�00 � sin�0, and k20 � k02x0 � k2x0 �
k02 � k2. It is seen that when inequality

k2x0�k
2
x0 � k02x0�=k

4
0 < sin�2k0x0a�=2k

0
x0a (3)

holds, the lateral shift is negative. It is reversed in com-
parison with the prediction of Snell’s law of refraction
that the lateral shift of transmitted beam would be a tan�00
and be always positive. Since sin�2k0x0a�=2k

0
x0a 
 1,

Eq. (3) leads to the following necessary condition,
k2x0�k

2
x0 � k02x0�=k

4
0 < 1, which means that the incidence

angle �0 satisfies

cos�0 <
�
n2 � 1

2

�
1=2

� cos�t: (4)

This shows that if the incidence angle satisfies Eq. (4),
that is to say if �0 is larger than the threshold angle �t, one
can always find a thickness a of the slab at which the
lateral shift of transmitted beam is negative. Further-
more, Eq. (4) is satisfied by any incidence angle if n >���
3

p
, which means that the phenomenon of negative lateral

shift is more easily observed experimentally in media of
larger refractive indices. The inequality (3) also shows
that negative lateral shifts are more easily implemented at
larger angles of incidence because the larger the angle of
incidence is, the more easily the inequality is satisfied.

A typical dependence of the lateral shift on a is shown
in Fig. 2, where the dielectric medium of the slab is
chosen to be perspex of refractive index n � 1:605 (�t �
27:4�) at wavelength � � 32:8 mm [8], a is rescaled by
k0x0a. In order to obtain large negative shifts, a large
incidence angle is chosen, �0 � 80:2�. Calculation under
these conditions shows that the lateral shift is equal to
�63:8 mm for a � 14:2 mm and is even equal to
�82:4 mm for a � 1:0 mm
FIG. 2. Dependence of the lateral shift s on the thickness a of
the slab, where the denser medium is chosen to be perspex of
refractive index n � 1:605 at wavelength � � 32:8 mm, the
incidence angle is �0 � 80:2�, a is rescaled by k0x0a.
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Now let us look briefly at the reflected beam. Denoted
by RA exp�i��kxx� kyy�	 the Fourier component of re-
flected electric field, the reflection coefficient R � R�ky�
is determined by Maxwell’s equations and boundary con-
ditions to be

R�ky� �
exp�i�=2�

4g2
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�
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�

�

�
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�
: (5)

The factor that determines the phase of reflection coef-
ficient is

sin2k0xa� i
�
k0x
kx

�
kx
k0x

�
sin2k0xa: (6)

If we denote it by g0 exp�i’0�, then the phase of reflection
coefficient will be ’0 � �=2. Obviously, we have

tan’0 � tan’ �
1

2

�
kx
k0x

�
k0x
kx

�
tank0xa:

What is meant by this equation is that the local prop-
erties of ’0 with respect to ky are the same as those of ’.
So the lateral shift of reflected beam is locally given by
Eq. (2) [6,18,19].

Since the imaginary part of complex number (6) is
non-negative, ’0 is defined over a finite interval �0; �	
and is a periodical function of k0xa with period �, as is
shown by the real curve in Fig. 3, where the physical
parameters are the same as in Fig. 2. For comparison, in
Fig. 3 is also shown by the dotted curve the dependence of
’ on k0xa under the same condition. The relation of ’0

with k0xa as a whole is different from that of ’. ’0 is not
continuous at k0xa � m� (m � 1; 2; 3:::), while ’ is.

The noncontinuity of ’0 at k0xa � m� is understand-
able. Mathematically, complex number (6) is equal to
zero when k0xa � m�, so that its phase is undefined.
Physically speaking, the reflection coefficient is equal to
zero when k0xa � m�, as Eq. (5) shows, so that its phase is
FIG. 3. Dependence of the phases ’0 and ’ on k0xa, where
� � 32:8 mm, n � 1:605, � � 80:2�. ’0 is shown by the real
curve, and ’ is shown by the dotted curve.
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meaningless. In this case, the reflected beam has very low
intensity and is severely distorted so that it cannot be de-
scribed in terms of a shifted beam [4]. All these amount
to a conclusion that when resonant transmission does not
occur, the lateral shifts of reflected and transmitted
beams are the same in this symmetric configuration
when measured the same way.

Of course, when measured with reference to the pre-
diction of Snell’s law, the lateral shift of transmitted beam
will be equal to s� a tan�00. So when the lateral shift of
reflected beam is negative with reference to geometrical
reflection, the lateral shift of transmitted beam is even
more negative with reference to the prediction of Snell’s
law, especially at large angle of incidence.

For a Gaussian-shaped incident beam, Ein� ~xx�jx�0 �
exp��y2=2w2

y � iky0y�, which has the Fourier integral
of the following form,

Ein� ~xx�jx�0 �
1�������
2�

p
Z
A�ky� exp�ikyy�dky;

where wy � w0 sec�0, w0 is the width of the beam at the
waist, and A�ky� � wy exp���w2

y=2��ky � ky0�2	 is the an-
gular spectral distribution, the electric field of the trans-
mitted beam can be written as

Et� ~xx� �
1�������
2�

p
Z
T�ky�A�ky� expfi�kx�x� a� � kyy	gdky:

(7)

If the incident light beam is well collimated, A�ky� is a
sharply distributed Gaussian function around ky0. In this
case, the transmission coefficient T�ky� can be approxi-
mated, by writing it in an exponential form, expanding
the exponent in Taylor series at ky0 and retaining the first
two terms, to be

T�ky� � exp

�
lnT�ky0��

1

T�ky0�
dT
dky0

�ky� ky0�
�

� T�ky0�exp
��

1
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� i
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�
�ky� ky0�

�
;

(8)

where d=dky0 denotes the derivative with respect to ky
evaluated at ky � ky0, i.e., at � � �0. Substituting Eq. (8)
into Eq. (7) and using paraxial approximation, kx �
kx0 � �ky � ky0� tan�0, we finally obtain for the electric
field of transmitted beam,

Et� ~xx� � T�ky0� exp
�
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�

� expfi��kx0 �  tan�0��x� a� � �ky0 �  �y	g;

(9)
where � �1=w2

yjT�ky0�j	�djTj=dky0�. It can be seen from
this expression that:
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(a) The transmitted beam is of the same Gaussian
shape as that of the incident beam as is indicated by the
fourth factor. The locus of its peak is given by

y� �x� a� tan�0 � d’=dky0 � 0: (10)

Its lateral shift along x � a line from point �a; 0� is then
�d’=dky0. This is what is given by Eq. (2) and is inde-
pendent of the waist width of the beam in this approxi-
mation. Equation (10) also tells us that the locus is parallel
to the wave vector �kx0; ky0� that is expected from Snell’s
law for transmitted beam.

(b) The impact of djTj=dky0, the dependence of jTj
upon ky, on the transmitted beam is different from that of
d’=dky0. The final factor shows that when  cannot be
omitted, the propagation wave vector of transmitted
beam is �kx0 �  tan�0; ky0 �  �, rather than �kx0; ky0�.
So the propagation direction specified by the modified
wave vector is different from the prediction of Snell’s law
and is thus not parallel to the locus of the peak of the
transmitted beam. Denoting by �0 � ! the angle of
propagation direction, it is found that ! � sin! �
 =kx0, which means that the angle deflection ! of propa-
gation direction depends closely on the waist width of the
beam. When the width of the beam is very large, the
deflection disappears. In addition, the third factor shows
that the magnitude of the transmitted beam is modified
also by djTj=dky0. This modification depends on the
width of the beam, too.

The approximating theory for the lateral shift pre-
sented here is in good agreement with numerical simula-
tions to within an error of 10% when the beam-waistw0 is
as small as 5 times the wavelength for � � 32:8 mm, n �
1:605, �0 � 80:2�. The numerical result for the lateral
shift is obtained by performing the integration in Eq. (7)
from ky � 0 to ky � k. The discrepancy between theoreti-
cal approximation and numerical simulation is mainly
due to the fact that the symmetric center, ky0 �
k sin80:2� � 0:985k, of the angular spectral distribution
A�ky� is far from the center, k=2, of the integral limits.
This is because the theoretical calculations are in better
agreement with numerical simulations when the center of
the angular spectral distribution is closer to the center of
the integral limits. When the two centers coincide, that is,
when the angle of incidence is equal to 30�, the difference
between theoretical and numerical results for the lateral
shift is less than 0:3%.

If higher-order terms of Taylor series are retained in
the exponent of the exponential form of T�ky�, other
effects will be expected [3].

The previously discovered negative lateral shifts of
reflected beam as mentioned at the beginning have all
their own bases, such as negative permittivity, absorption,
and negative index of refraction; how do we understand
the present negative lateral shift? To this end, we rewrite
Eq. (2) as
133903-3
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s �
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4
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; (11)

which consists of two parts. One is a thickness-
proportional term multiplied by a periodical factor with
respect to k0x0a, the other itself is periodical. It is the
second term that makes the lateral shift to be negative.
By averaging the two periodical functions over k0x0a
in one period �, we simply get

s � a tan�00; (12)

which is exactly what we expect from Snell’s law. This
may be explained as follows.

The GH shift and other effects for reflected beam with
respect to the prediction of geometrical optics at a single
dielectric interface result from the interaction of the beam
with the interface. When the angle of incidence is smaller
than the critical angle for total reflection, the effect of a
single interface for the reflected beam leads to an angular
shift instead of a lateral one [20,21]. Here the periodical
functions in Eq. (11) can be viewed as the result of the
interaction between the effects of the two interfaces in the
present situation which produces lateral as well as angular
shifts. The averaging over k0x0a just effaces the interaction
so as to produce what the geometrical optics predicts, in
much the same way as the average of a quantum observ-
able over a quantum state gives a good representation of
the classical variable [22].

To summarize, after obtaining the expression for the
lateral shift by the stationary-phase approximation, we
analyzed a Gaussian-shaped incident beam in paraxial
approximation and compared the theoretically approxi-
mating results with numerical simulations. It is shown
that the lateral shift of the transmitted beam is equal to
that of the reflected beam and can be either forward or
backward when they are all measured from the normal to
the interfaces (the x axis) at which the incidence point is
located. If compared with the prediction of Snell’s law, the
lateral shift of the transmitted beam is more backward
when the reflected beam is shifted backward with respect
to geometric reflection. It is also shown that the locus of
the transmitted beam defined by the peak of the intensity
is not parallel to its propagation direction specified by the
modified wave vector. Though the lateral shift is basically
independent of the waist width of the beam, the deflection
of propagation direction depends closely upon it. An
explanation for the negativity of lateral shift is advanced
at last in terms of the interaction of the boundary effects
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of the slab’s two interfaces. Of course, the energy is
conserved and the energy flow can be discussed by ap-
proaches of Tamir and Bertoni [11] or Lai et al. [12]. The
predicted effects here may have potential applications in
optical modulations. For instance, a small change in the
refractive index of the slab can result in a significant
variation of the lateral shift of the transmitted beam.
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