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In general correlated models, in addition to the usual adiabatic component with a spectral index nad1
there is another adiabatic component with a spectral index nad2 generated by entropy perturbation
during inflation. We extend the analysis of a correlated mixture of adiabatic and isocurvature cosmic
microwave background fluctuations of the Wilkinson Microwave Anisotropy Probe (WMAP) group,
who set the two adiabatic spectral indices equal. Allowing nad1 and nad2 to vary independently we find
that the WMAP data favor models where the two adiabatic components have opposite spectral tilts.
Using the WMAP data only, the 2� upper bound for the isocurvature fraction fiso of the initial power
spectrum at k0 � 0:05 Mpc�1 increases somewhat, e.g., from 0.76 of nad2 � nad1 models to 0.84 with a
prior niso < 1:84 for the isocurvature spectral index.
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isocurvature perturbations [4]. If the trajectory in the batic spectral index to be close to the isocurvature one,
Introduction.—The anisotropies in the cosmic micro-
wave background (CMB) radiation temperature are de-
scribed by the angular power spectrum that contains a
series of acoustic peaks and valleys. The positions of
these peaks depend crucially on the nature of the initial
fluctuations in the very early Universe, deep in the radia-
tion dominated era. In the adiabatic case, the specific
entropy is spatially constant, S � �s=s � 0, but there is
initially a perturbation in the comoving curvature,
hjRradj

2i � 0. Here the subscript rad refers to the begin-
ning of radiation dominated era.

In the isocurvature case, it is the entropy fluctuation
hjSradj

2i � 0 which serves as a seed for the present tem-
perature fluctuation. The entropy fluctuation can arise due
to fluctuations in relative particle number densities be-
tween different particle species. In general, the initial
mode can be a correlated or uncorrelated mixture of
adiabatic and isocurvature perturbations. In this Letter
we consider the cold dark matter (CDM) isocurvature
mode where the relative number densities of CDM and
photons are not spatially constant. We define the initial
entropy perturbation between CDM and photons to be

Srad � Sc� �
��nc=n��

nc=n�
�
�c
c

�
3

4

��
�

;

where nc and c are the number and energy densities of
CDM particles, respectively, and � refers to photons.
Inflation with one scalar field produces adiabatic initial
fluctuations only, but several scalar fields during inflation
generally lead to entropy (isocurvature) fluctuations also.

The first studies of mixed initial conditions for density
perturbations in the light of measured CMB angular
power assumed the adiabatic and isocurvature compo-
nents to be uncorrelated [1–3]. About the same time it
was pointed out that inflation with more than one scalar
field may lead to a correlation between the adiabatic and
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field space is curved during inflation, the entropy pertur-
bation generates an adiabatic perturbation that is fully
correlated with the entropy perturbation [5–8]. In addi-
tion, there is also the usual adiabatic perturbation created,
e.g., by inflaton fluctuations. Thus, in the final angular
power spectrum, one could have four different compo-
nents: (i) the usual independent adiabatic component,
(ii) a second adiabatic component generated by the en-
tropy perturbation during inflation, (iii) an isocurvature
component, and (iv) correlation between the second adia-
batic and the isocurvature component. In this Letter we
assume power laws for the initial power spectra of these
components and denote their spectral indices by nad1,
nad2, niso, and ncor, respectively. Only three of these are
free parameters, since, e.g., ncor � �nad2 	 niso�=2.

Although pure isocurvature models have been ruled out
[9] after the clear detection of the second acoustic peak
[10], a correlated mixture of adiabatic and isocurvature
fluctuations still remains as an interesting possibility. In
[6,11] angular power spectra have been calculated for
correlated models and compared to the CMB data, but
the spectral indices have either been fixed or set equal,
nad1 � nad2 � niso � ncor.This is not well motivated theo-
retically. E.g., if the entropy field is slightly massive
during inflation, then nad1 & 1:0< niso in most models.

Recently, the Wilkinson Microwave Anisotropy Probe
(WMAP) accurately measured the temperature spectrum
up to the second acoustic peak [12] and also the TE cross
correlation [13], which plays an important role in con-
straining cosmological models. The WMAP group con-
sidered the possibility of mixed models in [14] where, in
order to simplify the analysis, they set the two adiabatic
spectral indices equal, nad2 � nad1. They found that a
correlated mixture of adiabatic and isocurvature fluctua-
tions does not improve the fit to the data.

However, we would rather expect the second adia-
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nad2 
 niso, since both of these fluctuation components
have been generated by the entropy perturbation during
inflation. We study a correlated mixture of the adiabatic
and cold dark matter isocurvature fluctuations relaxing
the ‘‘WMAP condition’’ by letting nad2 � nad1. We show
that the data clearly allow this and, e.g., the upper bound
for the isocurvature fraction, fiso, slightly weakens. In
this preliminary analysis we use theWMAP data set only,
but allow nad1, nad2, and niso and the amplitudes of differ-
ent components to vary independently. A more thorough
analysis including other CMB and large scale structure
data will be presented in [15].

Dealing with correlation.—The transformation of the
comoving curvature perturbation R̂R and the entropy per-
turbation ŜS from the Hubble length exit during inflation
to the beginning of radiation dominated era is [6] 

R̂Rrad�k�

ŜSrad�k�

!
�

�
1 TRS�k�
0 TSS�k�

� 
R̂R��k�

ŜS��k�

!
; (1)

where the transfer functions TRS�k� and TSS�k� carry all
the information about the evolution of the perturbations.
They are obtained by solving numerically the equations
of motion for the adiabatic and entropy perturbations
during inflation and reheating. Almost all the way from
the generation of classical perturbations during inflation
to the beginning of radiation dominated era the cosmo-
logically interesting perturbation modes are super
Hubble type, k� aH. Then the evolution of perturba-
tions is practically k independent [7].

We define the correlation Cxy�k� between two pertur-
bation quantities x and y, which in our case are R for the
adiabatic and S for the isocurvature fluctuation, at the
beginning of radiation dominated era by

hx� ~kk�y�� ~kk0�ijrad �
2�2

k3
Cxy�k���3�� ~kk� ~kk0� : (2)

The angular power spectrum induced by the Cxy will be

Cxy l �
Z dk
k
Cxy�k�g

�T=E=B�
x l �k�g�T=E=B�y l �k�; (3)

where gl is the transfer function that describes how an
initial perturbation evolves to a presently observable tem-
perature (T) or polarization (E- or B-mode) signal at the
multipole l.

If everything changes slowly in time during inflation,
then TRS and TSS depend only weakly on k and the end
result of (1) is well approximated by the power laws�

k3

2�2

�
1=2

R̂Rrad � Ar

�
k
k0

�
n1
âar� ~kk� 	 As

�
k
k0

�
n3
âas� ~kk� ;

�
k3

2�2

�
1=2

ŜSrad � B
�
k
k0

�
n2
âas� ~kk� ; (4)

where âar and âas are Gaussian random variables obeying

hâari � 0; hâasi � 0; hâar� ~kk�âa
�
s� ~kk

0
�i � �rs�

�3�� ~kk� ~kk0� :

Ar, As, and B are the amplitudes of the usual adiabatic, the
131302-2
entropy generated second adiabatic, and the isocurvature
component, respectively. We define ~kk � k=k0, where k0 �
0:05 Mpc�1 is the wave number of a reference scale.

Inserting (4) into (2), the autocorrelations become

CRR � A2r ~kk
2n1 	 A2s ~kk

2n3 and CSS � B2 ~kk2n2 ; (5)

while the cross correlation between the adiabatic and
isocurvature fluctuations is

CRS�k� � CSR�k� � AsB~kk
n3	n2 : (6)

Substituting (5) and (6) into (3) and noting that the
present total angular power is

Cl � CRR l 	 CSS l 	 CRS l 	 CSR l;

we get for the temperature angular power spectrum

CTTl �
Z dk
k
� A2r�g

T
R l�

2 ~kk2n1 	 A2s�g
T
R l�

2 ~kk2n3

	 B2�gTS l�
2 ~kk2n2 	 2AsBg

T
R lg

T
S l
~kkn3	n2�; (7)

and for the TE cross-correlation spectrum

CTEl �
Z dk
k

�
A2rg

T
Rlg

E
Rl
~kk2n1 	 A2sg

T
Rlg

E
Rl
~kk2n3

	 B2gTSlg
E
Sl
~kk2n2

	 AsB�g
T
Rlg

E
Sl 	 g

T
Slg

E
Rl�
~kkn3	n2

�
: (8)

Above we defined the spectral indices n1, n2, and n3 so
that for the scale free case they are zeros. To match the
historical convention, we define new spectral indices as
follows: nad1�1�2n1, niso�1�2n2, and nad2�1�2n3.
General expressions for the spectral indices in terms of
the slow roll parameters are derived in [16]. Even the
power law spectra (4) may be bad approximations. E.g., in
double inflation numerical studies show that the pertur-
bations can be strongly scale dependent [17].

The amplitudes are not yet in a convenient form in (5)
and (6). The overall adiabatic amplitude at the reference
scale k0 is A2 � A2r 	 A2s . Using this, the adiabatic initial
power spectrum can be written as

CRR � A2��1� Y2�~kknad1�1 	 Y2 ~kknad2�1�; (9)

where 0 � Y2 � 1. Following [14] we define the isocur-
vature fraction by f2iso � �B=A�2 and obtain

CSS � A2f2iso ~kk
niso�1 :

The correlation amplitude is AsB � A2�B=A��As=A� �
A2fisosign�B�

������
Y2

p
from (6). Without loss of generality,

the total angular power spectrum can now be written as

Cl�A2�sin2�Cad1l 	cos2�Cad2l 	f2isoC
iso
l 	fiso cos�Ccorl �;

where A2 > 0 is the overall amplitude, 0 � � � �, and
fiso > 0. Cad1l , Cad2l , Cisol , and Ccorl are calculated by our
modified version of CAMB [18] for each cosmological
model from (7) or (8) keeping Ar � As � B � 1. For
131302-2
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example,CadTTl is given by the first term in the integral (7)
and the last term of integral (8) gives CcorTEl .

If nad1 and nad2 are nearly equal or amplitude Y2 is close
to zero or one, the adiabatic power spectrum in (9) can
well be approximated by a single power law CRR �
D~kknad�1, where D is the amplitude. However, in the gen-
eral case an attempt to write the term in square brackets
in (9) in terms of a single power law leads to a strongly
scale dependent spectral index nad�~kk��1�d lnCRR�~kk�=
d ln~kk. The first derivative of this is always non-negative:

dnad�~kk�

d ln~kk
�

�1� Y2�Y2�nad1 � nad2�2 ~kk
nad1	nad2

��1� Y2�~kknad1 	 Y2 ~kknad2�2
:

The WMAP group observed that the combined CMB and
other cosmological data favor a running spectral index
with a negative first derivative. Thus one would expect
that the data disfavor models where nad1 � nad2, since this
evidently leads to a positive first derivative of nad.
However, the correlation power spectrum CRS may
well balance the situation so that a more comprehensive
analysis [15] is needed.

Technical details of analysis.—In this analysis we
consider spatially flat (� � 1) universe and use a coarse
grid method leaving a sophisticated Monte Carlo analysis
[19] for future work [15]. We concentrate on the neighbor-
hood of the best-fit adiabatic model found in [20].
Naturally, this favors pure adiabatic models, but our pri-
mary interest is not to do full confidence level cartogra-
phy here. Instead we study whether relaxing the WMAP
constraint nad2 � nad1 has any interesting effects. Hence,
we scan the following region of the parameter space:
reionization optical depth ! � 0:11–0:19 (step 0.02), vac-
uum energy density parameter �� � 0:69–0:77 (0.02),
baryon density !b � 0:021–0:025 (0.001), cold dark
matter density !c � 0:10–0:18 (0.02), nad1 � 0:73–1:27
(0.03), nad2 � 0:55–1:84 (0.03), niso � 0:55–1:84 (0.03),
fiso � 0:0–1:2 (0.04), cos� � �1:0–1:0 (0.04). The best
overall amplitude A2 is found by maximizing the like-
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lihood for each model. As in any similar analysis, the
choice of the grid is a top-hat prior.

Since the likelihood code offered by the WMAP group
[13,21,22] is far too slow for a grid method, we are able to
use only the diagonal elements of the Fisher matrix when
calculating the likelihoods L. Ignoring the off-diagonal
terms increases the effective $2 � �2 lnL by about 4
from 1428 for well-fitted models, but since this effect is
common to all models, it has only a small effect on the
confidence level plots. However, we point out that the
results presented here are mostly qualitative in nature.

Results.—From the likelihoods on the �nad2; nad1� plane
in Fig. 1(a), marginalized by integrating over all the other
parameters, we see that the data do not especially favor
nad2 � nad1. Clearly most of the 2� allowed models are in
the regions where one of the adiabatic spectral indices is
larger than 1, the other being less than 1. Hence the
WMAP data favor models where the adiabatic compo-
nents have the opposite spectral tilts. Using the full Fisher
matrix of WMAP our best-fit model gives $2 � 1427:8
while the best-fit nad2 � nad1 model has $2 � 1428:0. For
comparison, our best-fit pure adiabatic model has $2 �
1429:0. So, allowing for a correlated mixture improves
the fit slightly. However, in pure adiabatic models the
number of degrees of freedom is % � 1342, while in
correlated mixed models we have four additional parame-
ters leading to % � 1338. Thus the goodness-of-fit of pure
adiabatic models is about the same as that of mixed
models: $2=% � 1:065 for adiabatic and $2=% � 1:067
for mixed models.

Figure 1(b) shows that the isocurvature spectral index
niso is not limited from above. To get a constraint one
would need to include some large scale structure data,
which we expect to give about niso & 1:8 [14] motivating
our prior niso < 1:84. When the isocurvature fraction fiso
(at k0 � 0:05 Mpc�1, corresponding the multipole leff 

700) is large, the data favor large niso, i.e., positively tilted
isocurvature spectrum in order to get less power at the
smallest multipoles l. We show also by dashed lines how
1.0 1.4 1.8n
iso

1.2

FIG. 1. The 68:3%=1� (white),
95:4%=2� (light gray), 99:7%=3� (me-
dium gray), and more than 3� (dark
gray) confidence levels for our general
models. The best-fit model �!;��; !b;
!c; nad1; nad2; niso; fiso; cos�� � �0:13;
0:73; 0:025; 0:12; 1:03; 0:64; 1:12; 0:52;
�0:08� is marked by an asterisk (*)
and the best-fit nad2 � nad1 model by a
circle (�). The dashed lines in (b) are
confidence levels for nad2 � nad1 mod-
els, and in (c) they indicate 1� and 2�
regions for uncorrelated models, i.e.,
cos� � 0.
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FIG. 2 (color online). An example of a model that is within
2� from our best-fit model. In the temperature power spectrum
(a) the vertical axis is l�l	 1�Cl=2� and in the TE cross-
correlation spectrum (b) the vertical axis is �l	 1�Cl=2�.
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the WMAP restriction nad2 � nad1 modifies the contours.
The difference is clear in the 1� region but 2� regions are
nearly identical. From one-dimensional, slightly non-
Gaussian, marginalized likelihood function of fiso we
find a 2� upper bound for the isocurvature fraction,
fiso & 0:84. With the restriction nad2 � nad1, the bound
would be about fiso & 0:76.

Figure 1(c), should be compared with the results ob-
tained for an uncorrelated mixture of adiabatic and iso-
curvature fluctuations in [2]. Although qualitatively
similar, the 1� and 2� regions of uncorrelated models
are much smaller than in [2] due to improved accuracy of
the data. Allowing for correlated models significantly
enlarges the 2� allowed region in the parameter space.

Since the correlation amplitude is fiso cos�, it is natural
that for a high isocurvature fraction fiso the data prefer
smaller j cos�j, which is evident in Fig. 1(d). Comparing
one-dimensional marginalized likelihoods for nad1 in the
pure adiabatic case and in the correlated models we find
that allowing for a correlation does not affect much the
usual adiabatic spectrum, which is nearly scale free:
nad1 � 0:97� 0:06 (pure adiabatic), nad1 � 0:98� 0:07
(correlated models).

To demonstrate the role of the different components
of the spectrum, we plot an angular power spectrum
of a 2� allowed model in Fig. 2. In this particular model,
a high 64% contribution of isocurvature to the total CTTl
at the quadrupole (l � 2) is allowed since the negative
correlation mostly cancels the excess power. In the TE
power spectrum there is 103% of isocurvature at the
quadrupole. In CTEl the cancellation between the cor-
relation and isocurvature is not exact at the quadrupole,
so that the isocurvature adds some power there com-
pared to pure adiabatic models. Increasing ! has the same
effect which could explain our observation that correlated
models seem to favor slightly smaller ! than pure adia-
batic models. The isocurvature modes introduce also an-
other degeneracy for main cosmological parameters.
Namely, allowing for general initial conditions prevents
one from determining !b from CMB [11]. Nearly any
value for !b is allowed, since it is determined by the
relative heights of the acoustic peaks, which are also
131302-4
affected by even a small isocurvature or correlation con-
tribution. In our case the degeneracy is even more severe
than in [11], since we allow for independently varying
spectral indices. The big bang nucleosynthesis calcula-
tions are valuable to determine !b.
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