
P H Y S I C A L R E V I E W L E T T E R S week ending
26 SEPTEMBER 2003VOLUME 91, NUMBER 13
Horizon Ratio Bound for Inflationary Fluctuations
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We demonstrate that the gravity wave background amplitude implies a robust upper bound on the
wavelength-to-horizon ratio at the end of inflation: �=H�1 & e60, as long as the cosmic energy density
does not drop faster than radiation subsequent to inflation. This limit implies that N, the number of
e-folds between horizon exit and the end of inflation for wave modes of interest, is & 60 plus a model-
dependent factor—for vast classes of slow-roll models, N & 67. As an example, this bound solidifies
the tension between observations of the cosmic microwave background anisotropies and chaotic
inflation with a �4 potential by closing the escape hatch of large N ( < 62).
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field value �: 4���=�pm � (where we have used the fact that � � 1
The purpose of this short note is twofold. First, we
briefly review how fluctuations predicted by inflation [1]
are related to N, the number of e-folds between the time
the scales of interest leave the horizon [2] and the end of
inflation. (Note that N is not the total number of e-folds of
inflation, a generally bigger number.) Second, we derive
an upper bound on N which should be used when con-
straining inflationary models. This is done in two steps:
(i) We derive a robust, model-independent limit on ~NN,
defined to be the logarithm of the ratio of the proper
wavelength of cosmological modes to the horizon at the
end of inflation [Eq. (8)]. (ii) From this, we infer a model-
dependent bound on N [Eq. (10)]. It is not uncommon to
find in the literature a wide variety of assumptions made
about N, and we find it timely to point out the importance
of this bound, especially in light of improving observa-
tions. It should be emphasized that, while a fair fraction
of our discussion is confined to single-field slow-roll
inflation for the sake of simplicity, the constraint on ~NN
in (8) is quite general, applicable to a much wider variety
of inflation models. This leads to a short discussion,
where we observe that ~NN might be a better independent
variable to adopt instead of N, when solving the infla-
tionary flow equations.

While revision of this paper was under way, a paper by
Liddle and Leach [3] appeared which reached very simi-
lar conclusions.

A brief review.—For large classes of single-field, slow-
roll inflationary models, the predictions for scalar and
tensor fluctuations can be summarized as follows (to
lowest order in slow roll) [4]:

ns � 1 � 
; r � �nT=2 � �; (1)

where ns is the scalar spectral index, r is the tensor to
scalar ratio, and nT is the tensor spectral index. The
equality r � �nT=2 expresses the well-known consis-
tency relation [6].

The slow-roll parameters � and 
 are related to deriv-
atives of the Hubble parameter H as a function of inflaton
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where the prime denotes differentiation with respect to�.
For a wave mode of interest, Eq. (1) is to be evaluated at
horizon crossing during inflation. This is equivalent to
evaluating Eq. (2) at the corresponding field value � �
�� (hereafter � is used to denote the time of horizon exit),
or, as is commonly done, at the corresponding N:
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where t is the proper time. Here N is the number of e-folds
between the horizon exit of the scale of interest (i.e., t�
or ��) and the end of inflation (te or �e). The end of
inflation is defined to be the time when slow roll ends.

A hierarchy of flow equations tells us how the slow-roll
parameters depend on N [8]:
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(4)

where ‘ ranges from 2 to in principle infinity, and ‘� are
the higher order slow-roll parameters. In understand-
ing the dynamics of inflation, it is also useful to remem-
ber the equation of motion for � [ _�� � �m2

plH
0=�4��],

and the Friedmann equation f3H2 � �8�=m2
pl:� 


V 	 _��2=2�g, where _�� is the derivative of � with respect
to proper time, and V is the inflaton potential [10].

As expressed above, it is clear that N plays an impor-
tant role in determining the properties of observable
fluctuations. One can imagine a bound on N provides
useful information about the fluctuations, although
the precise manner depends on the particular model
under consideration. To take a simple example, for
chaotic inflation with a �p potential: N���� 	 p=4 �
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at the end of inflation), and � � p=�p	 4N�, 
 �
��2	 p�=�2N 	 p=2�, leading to (at the lowest order)

ns � 1 � ��2	 p�=�2N 	 p=2�; r � p=�p	 4N�:

(5)

The predictions of chaotic inflation then are quite sen-
sitive to the precise value of N, and this dependence holds
for many inflationary models [11]. This leads to an
important question: What are the constraints on N?
The Wilkinson-Microwave-Anisotropy-Probe (WMAP)
team [13] fixed N to be 50 and then proceeded
to show that their data excluded the �4 model. Ref-
erence [14] pointed out though that N need not be fixed
at 50, and loosening this constraint correspondingly loos-
ens the constraints on the �4 chaotic inflation model. It is
not uncommon in the literature to allow N to range up to
70 (e.g., [5]).

A model-independent bound on ~NN.—First, we derive
a bound on a slightly different quantity, which turns
out to be more robust. Let us [9] define e ~NN � aeHe=k,
where k is the comoving wave number of interest, ae
is the scale factor, and He is the Hubble parameter, both
at the end of inflation. Hereafter, the subscript e refers
to the end of inflation. In other words, e ~NN is the ratio
of the physical wavelength �ae=k� to the Hubble radius
�H�1

e � at the end of inflation. It can be calculated back-
wards from today: There is a symmetry in the evolution
of aH=k. During inflation this ratio increases from unity
at horizon crossing to e ~NN , and then after inflation it falls
back to unity once the scale reenters the horizon. The
bound can be derived by extrapolating backwards from
today to get ae as a function of He, so that ~NN is solely a
function of He, and then arguing that He is less than or
equal to H�.

Let us now develop the argument in more detail to
make sure we arrive at a conservative bound. Naively, one
expects He � H0�

1=2
r;0 a

�2
e , where �r;0 � 4:2 10�5h�2

is the radiation density today in units of the critical
density, with h � H0=�100 km=s=Mpc� parametrizing
the Hubble constant today. Taking into account changes
in the number of relativistic species, as well as the pos-
sibility of decoupled degrees of freedom (e.g., neutrinos
today), one should use instead He � H0�

1=2
r;0 a

�2
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�ge=g0��gS0=g
S
e�

4=3�1=2. Here, g is the effective degrees
of freedom that relate the energy density � to temperature
T: � / gT4, while gS relates the entropy density s to T:
s / gST3. If g and gS were identical, then the factor in
square brackets would be �g0=ge�

1=6, smaller than
�3:36=100�1=6 � 0:57 since the standard model alone con-
tains more than 100 relativistic degrees of freedom at
very high temperatures. The difference between g [15]
mitigates this to some extent and is somewhat model
dependent; a conservative bound follows from setting
the coefficient to unity, so ae < �H0=He�

1=2�1=4
r;0 . Thus,
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Using now the weak assumption that H�, the Hubble
parameter in the early part of inflation when the fluctua-
tion leaves the horizon, is larger than He, we arrive at

e ~NN < e60:9
�

H�

1015 GeV

�
1=2

�
0:002 Mpc�1

k

�
: (7)

Note that ~NN is a function of scale k. The scale k �
0:002 Mpc�1 is well measured by the cosmic microwave
background (CMB), so it is a convenient pivot spot [13].

There is one possible loophole in Eq. (6). The end of
slow roll (ae) is generally earlier than the time when the
Universe finally completes reheating to become radia-
tion dominated. Equation (6) assumes that this transition
is instantaneous, but relaxing this assumption only
strengthens the inequality. To see this, for a given He,
define a quantity aeffe , which is the scale factor if one were
to extrapolate backward from the end of reheating to a
time when the Hubble parameter is He, as if the Universe
remains radiation dominated between these two times.
With the weak assumption that the true Hubble parameter
should fall slower than a�2 between these two times, one
can see that ae < aeffe . Combining this with the relation
aeffe < �H0=He�

1=2�1=4
r;0 gives us back the inequality in

Eq. (6).
The gravity wave amplitude is proportional to H�. A

conservative bound (3
) from observations of the CMB
anisotropies is H� < 3:3 1014 GeV [16]. Hence, Eq. (7)
constrains [21]

~NN < 60	 ln

�
0:002 Mpc�1

k

�
: (8)

The largest observable scale today corresponds to k �
H0, implying the largest possible observationally relevant
~NN is 62	 ln�0:7=h�.

We refer to this limit on ~NN as the horizon ratio bound,
as it derives from comparing the horizon today with
that at the end of inflation. An important assumption is
that the Hubble parameter does not fall faster than a�2

after the end of inflation, i.e., the energy density does
not redshift faster than radiation. If, for instance, there is
an extended period of domination by a kinetic-energy-
dominated scalar field (H / a�3), the above bound would
be violated. On the other hand, periods of late entropy
production or secondary inflation would serve only to
strengthen our bound. This caveat aside, our bound is
quite general—it is independent of the exact model of
inflation.

Upper bound(s) on N.—The amount of expansion be-
tween horizon exit and the end of inflation is given by
eN � aeH�=k � e ~NNH�=He. Following Eq. (6), we see that

eN < 0:08
�
H0

k
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: (9)
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The second term inside the square brackets can be
bounded using the gravity wave amplitude as before.
The first is the square root of the ratio of the Hubble
parameter at exit and at the end of inflation. This ratio can
be rewritten using Eqs. (2) and (3):H�=He as a function of
N is given by 
exp

R
N
0 ��N

0�dN0� [22]. Hence, we obtain

N < 60	
1

2

Z N

0
��N0� dN0 	 ln

�
0:002 Mpc�1

k

�
: (10)

The integral over � introduces a dependence on the in-
flation model to the bound on N. The weakest statement
one could make is that � < 1 during inflation, and so the
integral has to be less than N, implying a bound on N that
is weaker than the one on ~NN by a factor of 2. Imposing the
requirement that inflation has to end before nucleo-
synthesis (temperature �1 MeV) strengthens this bound
somewhat to N < 105	 ln�0:002 Mpc�1=k�. This is our
most general model-independent bound on N [23].

However, generic single-field slow-roll models (includ-
ing hybrid models as effective single-field models) likely
obey a significantly stronger bound on N. We perform an
integration of the flow equations [Eq. (4)] up to the fifth
order in slow roll (i.e., ‘ � 5), for a million randomly
generated models in the slow-roll parameter space, fol-
lowing the prescription of [5]. The trajectories of � can be
used to evaluate the integral in Eq. (10). We solve for the
resulting bound on N for each model, whose probability
distribution is shown in Fig. 1. It appears there is an upper
limit on N:

N < 67	 ln�0:002 Mpc�1=k�: (11)
FIG. 1. The probability distribution of N bound [Eq. (10)]
among a host of Monte Carlo realizations of inflation models.
The spike around 60 is largely due to fixed points, models
where inflation does not terminate at � � 1, but rather �� 0.
The inset shows two examples of how � flows with N (i.e., not
fixed points).
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We do find, however, some evidence for a weak increase in
this upper bound as one truncates the slow-roll flow
equations at higher orders.We therefore recommend using
Eq. (10) to evaluate the appropriate bound on a case by
case basis.

An instructive example to see why the model-
dependent correction to the N bound is small is chaotic
inflation with a �4 potential. From just before Eq. (5), we
know � � 1=�1	 N�, and so

R
N
0 ��N

0�dN0 � ln�1	 N�.
Plugging this into Eq. (10) implies a bound of N < 62	
ln �0:002 Mpc�1=k�. Such a modest N for the �4 model
runs the danger of producing too much spectral tilt and/or
too high a tensor to scalar ratio [Eq. (5)]. Recently, it was
shown in Ref. [24] that the combination of WMAP with
seven other CMB experiments rules out the �4 model at
3
 unless N is larger than 66. This, together with our
bound, appears to rule out �4 chaotic inflation. However,
we caution that [24] combined different experiments
assuming independence.

Discussion.—In summary, we have derived a model-
independent upper limit of about e ~NN < e60 on the ratio of
wavelength to horizon size at the end of inflation [Eq. (8)].
A corresponding model-dependent upper limit on eN ,
which is the amount of expansion between horizon exit
and the end of inflation, is given in Eq. (10). For vast
classes of slow-roll models, we find that this gives a bound
of N < 67.

The discussion thus far points to two different ways of
implementing the horizon-ratio bound. One is to use
Eq. (10) and evaluate the model-dependent correction
on a case by case basis. The other is to bypass the use of
N altogether. It can be shown from Eqs. (2) and (3) that

�1� ��
d

d ~NN
�

d
dN

: (12)

This can be used to rewrite the flow equations (4) using ~NN
instead of N as the independent variable. The predictions
for inflationary fluctuations can therefore be expressed in
terms of ~NN in place of N. Our robust bound on ~NN can be
implemented directly. We will explore this further in a
subsequent paper. This constraint is a useful addition to
the host of other constraints emerging from cosmological
observations [25].
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