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Lévy Model for Interstellar Scintillations
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Observations of radio signals from distant pulsars provide a valuable tool for investigation of
interstellar turbulence. The time shapes of the signals are the result of pulse broadening by the
fluctuating electron density in the interstellar medium. While the scaling of the shapes with the signal
frequency is well understood, the observed anomalous scaling with respect to the pulsar distance has
remained a puzzle for more than 30 years. We propose a new model for interstellar electron density
fluctuations, which explains the observed scaling relations. We suggest that these fluctuations obey Lévy
statistics rather than Gaussian statistics, as assumed in previous treatments of interstellar scintillations.
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FIG. 1. Intensity of a typical observed pulsar signal averaged
over many periods of pulsation. The shown time interval spans
the pulsar period. The data were taken with the Arecibo tele-
at the half-amplitude level, scales with the wavelength scope, at 430 MHz. (Courtesy of N. D. Ramesh Bhat [7]).
Introduction.—Electron density fluctuations in the in-
terstellar medium (ISM) cause scintillations of the inten-
sity of signals arriving from distant pulsars. If the
medium were completely transparent, the shape of the
arriving signal would coincide with the shape of
the signal emitted by the pulsar. However, the observed
pulse is much broader, and this effect is attributed to the
random refraction the waves experience while they travel
through the medium [1–6]. To investigate pulse broad-
ening one can assume that the pulsar intrinsic signal is
narrow in time, I0�t� / ��t� t0�, where I0�t� is the signal
intensity. The observed signal is broad and asymmetric,
with a sharp rise and a slow decay; see Fig. 1. Observed
shapes of the pulses are similar for different pulsars (after
proper rescaling), suggesting that the density fluctuation
statistics along different lines of sight are to some extent
universal.

For estimates assume that the pulsar distance is d�
10 kpc, the typical electron density is n� 0:03 cm�3, and
the observational wave frequency is �� 500 MHz. Then
the plasma electron frequency !pe � �4�ne2=me�1=2 is
much smaller than �, and density fluctuations change the
wave phase only slightly. To estimate the time delay one
can use the approach of geometric optics, where the
propagating ray is refracted (scattered) by small prisms
of density inhomogeneities [8–12]. At each scatter event
occurring at a mean-free path l, the propagation angle
changes by a small amount, ��� �2r0�n (see below),
where � is the wavelength, r0 � e2=mec2 is the classical
radius of the electron, and �n is the density difference at
characteristic separation l. Using the standard assumption
that �� is random and Gaussian, one finds that the path
direction deviates from a straight line by ��
�2r0�n0�d=l�

1=2, where �n0 is the characteristic ampli-
tude of density-difference fluctuations, and the path
length deviates from the distance d by �d� d�2 /
�4d2. The broadening time can be estimated as �d �
�d=c, which gives the standard scaling �d / �4d2.

Observations show that the signal width, �d, estimated
0031-9007=03=91(13)=131101(4)$20.00 
according to the obtained formula, �d / �4, while the
scaling with distance is close to �d / d4, contradicting
the analytical prediction, as is seen in Fig. 2 [15]. This
paradox was first discussed by Sutton [1], and although
the theory of scintillations has been developed for more
than 30 years, the contradiction has resisted analytical
understanding [2,3].

In this Letter we propose that the anomalous scaling
with the distance is an evidence of non-Gaussian density
fluctuations in the ISM. We suggest that the probability
distribution of density gradients has a power-law decay,
and its second moment is divergent. Such probability
distributions are common in theories of turbulence, as
is consistent with the argument that the density statistics
are governed by turbulent motions in the ISM [17,18]. The
sum of many angular deviations caused by such fluctua-
tions does not have a Gaussian distribution; instead, the
2003 The American Physical Society 131101-1



[16]
[15]

FIG. 2. Pulse temporal broadening as a function of the dis-
persion measure, DM �

R
d
0 n�z�dz, which is a measure of the

distance to the pulsar [13]. Except as noted, data were taken
from [14] see also [15,16]. The solid line has slope 4.
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limiting distribution is of the Lévy type, and the ray
angle performs a Lévy flight instead of a conventional
random walk. We present a solvable model of scintilla-
tions that allows us to unify and extend to a non-Gaussian
case the standard analytical approaches; see, e.g., [4,8].
We then apply this model to Lévy density statistics,
compare it to the observational data, and demonstrate
that the model naturally produces correct scalings of
the signals. We report main results here; the detailed
discussion is presented in [11].

Wave equation in a random medium.—The Fourier
amplitude of electric (or magnetic) field, E!�r�, in the
isotropic ISM with dielectric permittivity �! obeys the
wave equation�

���
!2

c2
�!�r�

�
E!�r� � 0; (1)

where �!�r� � 1�!2
pe�r�=!2, and the electron plasma

frequency !pe�r� changes slowly on the wave scale �.
Assuming that the wave propagates in the line-of-sight
direction, z, we separate the quickly changing phase of
the wave from the slowly changing amplitude, E!�r� �
exp�iz!=c��!�z;x�, where x is a coordinate perpendicu-
lar to z. Substituting this into the wave equation (1), we
derive the equation for the wave amplitude,�

2i
!
c
@
@z

��? � 4�r0n�x; z�
�
�!�x; z� � 0; (2)

where �? is a two-dimensional Laplacian in the x plane.
Following [4–6], we introduce the function I�r1; r2; t� �
��r1; t��	�r2; t�, whose Fourier transform with respect to
time is I��r1; r2� �

���������
2=�

p R
d!�!��=2�r1��	

!��=2�r2�.
For coinciding coordinates this function is the intensity
of the radiation whose variation in time we seek. To find
this function, we may first solve the equation for
V!;��r1; r2� 
 �!��=2�r1��	

!��=2�r2�, which can be de-
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rived from Eq. (2). Assuming that � � !, we obtain
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@z

�
2k��k

4k2
@2V

@x2
2

�
2k� �k

4k2
@2V

@x2
1

�
2�r0
k

�nV; (3)

where we denoted k � !=c, �k � �=c, and �n �
n�x1; z� � n�x2; z�.

Equation (3) is hard to solve without further simplifi-
cation since n�x; z� is an unknown random function. The
standard procedure is to assume that the density fluctua-
tions are Gaussian with a specified correlator in x and
only short-scale correlations in z; see [4]. Equation (3)
can then be averaged over the Gaussian ensemble of
density fluctuations and over different positions in
x space. However, the resulting solution yields a scaling
of �d / �4d2 that contradicts observations, as noted
above.

We propose that the turbulent gas motions in the ISM
give rise to strongly intermittent and non-Gaussian den-
sity fluctuations. If the distribution function of �n has a
power-law decay as j�nj ! 1 and has no second mo-
ment, then the sum of many independent ray angle devia-
tions does not behave as a Gaussian variable (the central
limit theorem does not hold). Instead, the limiting dis-
tribution, if it exists, is the Lévy distribution. A random
walk whose increments are Lévy distributed is called a
Lévy flight. Such processes are common in various ran-
dom systems and often replace Brownian motion in tur-
bulent systems [19].

The Fourier transform (the characteristic function) of a
symmetric Lévy distribution P���n� has the simple form

F� � �
Z 1

�1
d�nP���n� exp�i �n� � exp��Cj j��;

(4)

where 0<�< 2, and C is some positive constant.
Equation (4) can be taken as the definition of a symmetric
Lévy distribution. The sum of N Lévy distributed varia-
bles scales as

P
N�n� N1=�, which becomes diffusion in

the Gaussian limit � � 2. For �< 2, the probability
distribution function has algebraic tails, P���n� �
j�nj�1�� for j�nj ! 1, and its second moment is diver-
gent. We thus assume that the random density-gradient
fluctuations are Lévy distributed and are short-scale cor-
related in z. Below we first show how Eq. (3) can be
solved for a general case of non-Gaussian random density
field. Following that we apply our method to Lévy
distribution.

Batchelor approximation.—Propagation as described
by Eq. (3) cannot be simplified in general, when �n is
not a short-scale correlated Gaussian random variable.
However, analytical investigation is possible in the im-
portant case of smooth turbulent fluctuations. This case is
analogous to the Batchelor limit, in the problem of tur-
bulent random advection [20]. For that approximation
in this Letter, we neglect all effects other than those
of density gradients: n�x1� � n�x2� ’ ��z� � �x1 � x2�,
131101-2
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where the density gradient ��z� is a random variable with
correlation length l� d along z. In this approximation,
the variables separate in Eq. (3) and it can be solved
exactly. We leave analysis of more complicated cases for
further communcation and present here results for this
simple case, which captures the essential physics.

As a further simplification, consider one-dimensional
variables x1 and x2. Since the variables separate, we can
look for the solution in the factorized form V�x1; x2; z� �
U1�x1; z�U2�x2; z�. Then the equation for U1 reads

i
@U1

@z
� �

2k� �k

4k2
@2U1

@x21
�

2�r0
k
%�z�x1U1: (5)

The analogous equation for U2 is obtained by changing
k! �k. The solution of Eq. (5) is sought in the form
U1�x1; z� � A�z� exp�iB�z�x1 � iC�z�x

2
1�, with the initial

condition U1�z � 0� � ��x1�, if the refracting medium
extends all the way up to the pulsar. Substituting this
ansatz into (5), we find

A�z� �
A0���
z

p exp

 
�i�2k��k�

4k2

Z z

0
B2�z0�dz0

!
; (6)

B�z� �
�2�r0
kz

Z z

0
%�z0�z0dz0; C�z� �

k2

�2k��k�z
:

(7)

Note that this solution describes the path of a single ray
through a sequence of density gradients %�z�. Effects of
multiple rays can be found from superposition. The in-
tensity of received radiation can be calculated from the
Fourier transform I!�z; t� �

R
1
�1 V!;��x � 0; z� �

exp��i�t�d�=
�������
2�

p
. In this Fourier transform, individ-

ual ray paths will yield contributions with phase propor-
tional to � � �kc, with coefficient equal to the travel
time for that path. Cross terms describing interference of
paths yield contributions that oscillate rapidly with fre-
quency and average to zero; see, e.g., [12]. The intensity,
averaged over an ensemble of statistically independent
rays, is then given by the average over individual travel
times or equivalently over different realizations of %�z�.

This leads to

I!�z; t� /

*
�

 
t�

d
c
�

1

2k2c

Z z

0
B2�z0�dz0

!+
; (8)

where the angular brackets denote the statistical average.
Note that B�z� is proportional to the deflection angle � of
the ray. Formula (8) gives the shape of the signal observed
at the Earth; if the scattering medium were absent, this
signal would be undistorted, I�t� / ��t� d=c�.

Lee and Jokipii investigated Eq. (3) for short-scale
correlated Gaussian density fluctuations [4]. For averag-
ing over Gaussian %�z�, our solution (8) reproduces those
obtained by Williamson [8] with a phenomenological
approach. Thus, Williamson’s solutions are applicable
under the assumption of smooth Gaussian density fluctu-
ations, and when one keeps only the linear term in the
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expansion of �n. Below we apply our approach to the
Lévy distributed density fluctuations.

Scintillations as Lévy flights through the interstellar
medium.—The averaging in formula (8) can be performed
for the Lévy distributed short-scale correlated density
gradients %�z�. To do this, we represent integrals in (7)
and (8) in the discretized forms; i.e., we assume that d �
nl, z0 � ml, and z00 � sl, where l is the correlation length
of density fluctuations, and change

R
z
0 f�z

0�dz0 !P
n
m�1 f�lm�l for an arbitrary function f�z�. The right-

hand side of (8) is the probability distribution of the
propagation time delay, � � t� d=c. For a continuous
medium, this time delay is given by

� �
r20l

3�4

8�2c

Xn
m�1

"
1

m

Xm
s�1

s%s

#
2

: (9)

The solution (8) can now be calculated numerically as the
probability distributions of this variable, under the as-
sumption that %s are distributed independently, identi-
cally, and according to the Lévy law (4). We, however,
need to specify the parameter � in the Lévy formula.
We do this by comparing our model with observations.
The observed scaling of pulse broadening is close to �d /
�4d4, while our model gives � / �4d�2���=�, as is
seen from the scaling for sums of Lévy-distributed var-
iables,

P
m%s �m

1=�, following Eq. (4). Thus, we obtain,
� � 2=3.

Note that standard Gaussian models of density distri-
bution were not able to satisfy both observational scal-
ings, �4 and d4, simultaneously. Various studies of
nonsmooth density fluctuations within these models
have not reproduced this scaling either [10,11,21]. Our
model reproduces the anomalous d scaling naturally.
Moreover, it predicts that the probability distribution
function of electron density gradients in the interstellar
turbulence decays as P�%� � j%j�1�� � j%j�5=3. Power-
law distributions P�%� with �< 2 are indeed observed in
numerical simulations of compressible turbulence [22];
however, no one has yet derived them from first prin-
ciples. To date theories of scintillations have exploited
only second-order correlators of the density fluctuations,
while in our approach these correlators do not exist (or do
not matter) and one must work with the whole probability
distribution function.

Although our goal was to explain the scalings of the
signals, it is interesting to see to what extent we can
predict their shapes. The delay time is proportional to
the square of the typical deflection angle of the ray
trajectory, � / �2, where � has the Lévy distribution
P����. Therefore, the distribution of arrival times is
I��� / P���

1=2���1=2, with the asymptotic form I��� /
��1��=2 as �! 1. Figure 3 shows the distribution of �
from numerical calculation, with a power-law decay at
long times, as expected. Because the observed shape of
the scattered pulse is directly related to the probability
distribution of gradients in electron density in the ISM,
131101-3
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FIG. 3. Pulse-broadening functions for the model of linear
density fluctuations obeying the Lévy statistics with � � 2=3.
The distribution of the time delay (9) is found numerically
using 106 rays. The inset shows the large-time asymptotics of
the curve in the log-log scale.
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observational data offer the possibility of characterizing
interstellar turbulence [7].

The curve in Fig. 3 closely resembles the observed
signals, although the presented analytical shapes are the
result of averaging over an ensemble of noninterfering
rays, corresponding to an observational average over an
infinite amount of time. In practice, the averaging time is
finite, and the long tail of the distribution, dominated by
rare events, may not have converged. We also ignore
instrumental response [7]. Moreover, a nonanalytic
density field is more natural for a turbulent cascade
[17,18,23]. Also, the small-scale density fluctuations
that produce scintillations should be collisionless, and
elongated along the local magnetic field [17]; the scatter-
ing is likely to be highly anisotropic, and locally nearly
one dimensional. We will consider these effects in future
work. Interestingly, some scattered pulsars show power-
law declines at long times, such as that in Fig. 1.
Scintillation of nearby pulsars also shows evidence for
weak large-angle scattering [24]. Some interferometric
studies suggest a ‘‘halo’’ surrounding the source at large
scattering angles and excess scattering at small angles
relative to a Gaussian [25,26], as might be expected for a
Lévy distribution of scattering angles. Intrinsic source
structure, and the relatively short observational averages,
may complicate this interpretation.

Finally, we comment on the original explanation of the
anomalous d scaling by Sutton [1]. Sutton suggested that
encounters with much more strongly scattering HII re-
gions become more probable on longer lines of sight. This,
however, requires a perhaps surprisingly close coordina-
tion of DM (over 1.7 orders of magnitude) with �d (over
8 orders of magnitude). Sutton’s proposal assumes essen-
tially nonstationary statistics for the density distribution
131101-4
along z. Our proposal also invokes rare, large events, but
in a statistically stationary way.

To summarize, we propose that the observed anoma-
lously strong time broadening of pulsar signals is evi-
dence for non-Gaussian distribution of electron density
gradients in the ISM. We argue that this distribution is of
the Lévy type, in accord with the turbulent origin of
density fluctuations, and we present a simple model that
explains the observational scalings of pulsar signals.
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