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Local Quantum Criticality in Confined Fermions on Optical Lattices
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Using quantum Monte Carlo simulations, we show that the one-dimensional fermionic Hubbard
model in a harmonic potential displays quantum critical behavior at the boundaries of a Mott-insulating
region. A local compressibility defined to characterize the Mott-insulating phase has a nontrivial
critical exponent. Both the local compressibility and the variance of the local density show universality
with respect to the confining potential. We determine a generic phase diagram, which allows the
prediction of the phases to be observed in experiments with ultracold fermionic atoms trapped on
optical lattices.
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domain that coexists with a compressible phase. This is edge from unconfined periodic systems. Although it is
The Mott metal-insulator transition (MMIT), a
paradigm of strong correlations, was recently realized
in ultracold atoms confined on an optical lattice [1].
Because of the fact that the atoms interact only via a
contact potential, this system constitutes the most direct
experimental realization of the Hubbard model which is
the prototype generally used to study the MMIT.Whereas
optical lattices contain bosonic atoms, recent progress in
cooling techniques allow fermionic systems to go well
below the degeneracy temperature [2,3], such that even
superfluidity appears within reach [4]. It is, therefore, to
be expected that soon a fermionic MMIT will be realized
on an optical lattice, offering the possibility to confront
in a controlled way our knowledge of the MMIT in solid-
state systems, without extrinsic effects always present
there. This possibility is especially important since the
MMIT is not only a long-standing problem in condensed
matter physics, but it has also received renewed attention
in recent years due to its different manifestations in a
number of transition metal oxides, the most prominent
being high temperature superconductors [5].

Motivated by the possibility of such cross-fertilization,
we performed quantum Monte Carlo (QMC) simula-
tions for the ground state of a one-dimensional Hubbard
model with a harmonic potential, as in experiments with
ultracold atoms, confining spin 1=2 fermions. The one-
dimensional case was chosen since in one dimension, the
quantum critical properties for the unconfined system are
well characterized by the Bethe-ansatz solution where, in
particular, the global compressibility �� @n=@� di-
verges as ��1, where � � 1� n, and n is the expectation
value of the density [6]. However, as shown theoretically
[7] and numerically [8], in the presence of a confining
potential the Mott-insulating phase is restricted to a
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in contrast to the global character typical of solid-state
systems. We show in this Letter that a properly defined
local compressibility displays critical behavior on ap-
proaching the edges of the Mott-insulating phase, reveal-
ing a new critical exponent. Furthermore, it is shown that
both the variance of the local density, �i � hn2i i � hnii

2,
and the local compressibility as functions of the local
density, ni, are independent of the confining potential for
ni ! 1. The exponents are also universal with respect to
the strength of the interaction.

The Hamiltonian studied is as follows:
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where cyi� and ci� are creation and annihilation operators,
respectively, for a fermion on site iwith spin� �"; # . The
local density per spin is ni� � cyi�ci�. The contact inter-
action is repulsive (U > 0) and the last term models the
potential of the magneto-optic trap. The QMC simula-
tions were performed using a projector algorithm [9–12],
which applies exp���H� to a trial wave function (in our
case the solution for U � 0). A projector parameter � ’
20=t suffices to reach well converged values of the ob-
servables discussed here. A time slice of �� � 0:05=t was
used in general.

Figure 1 shows density profiles along a harmonic trap
(� � 2) for different fillings such that the system goes
from an entirely metallic phase to a phase with insulating
regions due to full occupancy of the sites, coexisting with
metallic regions. At this point, such an identification is
based only on the occupation number, using our knowl-
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FIG. 1. Density profiles along the trap for different fillings.
Flat terraces are the Mott-insulating regions.
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natural to identify the regions with n � 1 as insulating
phases, the global compressibility used in unconfined
systems is not a useful order parameter to characterize
the phases due to the coexistence of local compressible
regions with incompressible ones. A first quantity that can
be used instead is the variance of the site density �i, since
on entering the Mott-insulating region a suppression of
double occupancy should occur, leading to a decrease of
the variance.

Figure 2(a) shows three characteristic density profiles.
In all of them, U=t � 6 but depending on the filling (Nf)
and strength of the potential V2, we obtain (i) an approxi-
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FIG. 2 (color online). (a) Density profiles for (4) Nf � 30,
U � 6t, and V2 � 15t; (�) Nf � 70, U � 6t, and V2 � 6:25t;
and (5) Nf � 74, U � 6t, and V2 � 7t. (b) Variance of the
local density. (c) Local compressibility �l as defined in Eq. (2).
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mately parabolic density profile, indicating that the whole
system is in a metallic phase, (ii) increasing the number
of particles, a Mott plateau develops in the center of the
system, and, finally, (iii) with still a higher filling, a new
metallic phase develops in the center of the plateau. The
potential V2 was varied in order to obtain well developed
phases. The corresponding profiles for the variance � are
shown in Fig. 2(b). In general, a suppression of � is
present in the regions where the density profile shows a
plateau. However, although in the region with ni � 1 the
variance is lower than in the regions surrounding it, it
does not vanish. Therefore, while the decrease of � is a
signature for the Mott-insulating phase, still a clearer
distinction is needed. For this purpose we introduce a
local compressibility defined as follows:

�li �
X

jjj�l�U�

�i;i
j; (2)

where �i;j is the density-density correlation function. We
take the length scale l�U� ’ b ��U�, where ��U� is the
correlation length given by �i;j in the unconfined system
at half filling for the given value of U. The value of b is
such that �l becomes insensitive to the value chosen. In
general, we have b� 5–10, with ��U� � a (a is the lattice
constant) for the values of U used here. The local com-
pressibility thus gives the response to a constant shift of
the potential over a finite range but over distances larger
than ��U� in the periodic, unconfined system. If a region
is in a Mott-insulating phase, and hence incompressible,
no density response over distances larger than � is ex-
pected, leading to �li � 0. Figure 2(c) shows the profile
along the trap of �li, where the compressibility becomes
zero in the outlying regions, where no particles are pres-
ent and also where a Mott plateau is present. Therefore,
the local compressibility defined here serves as a genuine
local order parameter to describe the insulating regions
that coexist, in general, with a surrounding metallic zone
or even with metallic intrusions, beyond the intuitive
pictures on the basis of the density profiles.

Now that phases can be characterized quantitatively,
we concentrate on the regions where the system goes
from one phase to another. Criticality can arise, despite
the microscopic spatial size, due to the extension in
imaginary time that reaches a thermodynamic limit at
T � 0, very much like the case of the single impurity
Kondo problem [13], where long-range interactions in
imaginary time appear for the local degree of freedom
as a result of the interaction with the rest of the system.
Recent experiments leading to a MMIT [1] consider a
system with linear dimension �65a, i.e., still in this
microscopic range. An intriguing future question, for
both theory and experiment, will be the role of spatial
dimension in the critical behavior of systems in the
thermodynamic limit.

Figure 3 shows the local compressibility vs � for �! 0
in a double logarithmic plot. A power law �l � �$ is
130403-2
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obtained, with $< 1, such that a divergence results in its
derivative with respect to n, showing that critical fluctua-
tions are present in this region.

Since the QMC simulation is affected by systematic
errors due to discretization in imaginary time, it is im-
portant to consider the limit ��! 0 in determining the
critical exponent. The inset in Fig. 3 shows such an
extrapolation leading to $ ’ 0:68–0:78. At this point
we should remark that the presence of the harmonic
potential allows the determination of the density depen-
dence of various quantities with unprecedented detail on
feasible system sizes as opposed to unconfined periodic
systems, where systems with 103–104 sites would be
necessary to allow for similar variations in density. In
addition to the power law behavior, Fig. 3 shows that for
� ! 0, the local compressibility of systems with a har-
monic potential but different strengths of the interaction
or even with a quartic confining potential collapse on the
same curve. Hence, universal behavior as expected for
critical phenomena is observed also in this case. This fact
is particularly important with regard to experiments,
since it implies that the observation of criticality should
be possible for realistic confining potentials, and not only
restricted to perfect harmonic ones, as usually used in
theoretical calculations. However, Fig. 3 shows also that
the unconfined case departs from all the others. Up to the
largest systems we simulated (400 sites), we observe an
increasing slope rather than the power law of the confined
systems.

Having shown that the local compressibility displays
universality on approaching a Mott-insulating region, we
consider the variance � as a function of the density n for
various values of U and different confining potentials.
Figure 4 shows � vs n for a variety of systems, where not
only the number of particles and the size of the system are
changed, but also different forms of the confining poten-
tial were used. Here we considered a harmonic potential,
a quartic one, and a superposition of a harmonic, a cubic,
and a quartic one, such that even reflection symmetry
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FIG. 3 (color online). The local compressibility �l vs � �
1� n at � ! 0 for (4) Nf � 70, U � 8t, and V2 � 6:25t; (5)
Nf � 70, U � 6t, and V2 � 6:25t; (�) Nf � 72, U � 6t, and a
quartic potential with V4 � 6:25t; (�) unconfined periodic
system with U � 6t. Inset: dependence of the critical exponent
$ on ��2.
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across the center of the system is broken. It appears at first
glance that the data can be distinguished only by the
strength of the interaction U, showing that the variance
is rather insensitive to the form of the potential. The
different insets, however, show that a close examination
leads to the conclusion that only near n � 1 and only in
the situations where at n � 1 a Mott insulator exists,
universality sets in.

The inset for n around 0.6 and U � 8t, shows that the
unconfined system has different variance from the others
albeit very close on a raw scale. This difference is well
beyond the error bars. Also the inset around n � 1 and for
U � 4t shows that systems that do not form a Mott-
insulating phase in spite of reaching a density n � 1
have a different variance from those having a Mott in-
sulator. The features above show that even a very local
quantity like the variance cannot be accurately described
using a local density approximation (Thomas-Fermi) [14]
and can lead to even qualitatively wrong results, as for
U � 4t and n � 1, where such an approximation would
predict a Mott insulator instead of a metal as in our
simulations. Only the case where all systems have a
Mott-insulating phase at n � 1 (U � 8t) shows universal
behavior independent of the potential, a universality that
encompasses also the unconfined systems. For the uncon-
fined system, the behavior of the variance can be exam-
ined with Bethe ansatz [15] in the limit � ! 0. In this
limit and to leading order in �, the ground-state energy is
given by E0���=N � E0�� � 0�=N / � [16], such that the
double occupancy, which can be obtained as the deriva-
tive of the ground-state energy with respect to U, will
also converge as � towards its value at half filling. Such
behavior is also obtained in our case as shown by the inset
at n � 1 (U � 8t) in Fig. 4. Detailed data for the variance
close to n � 1 will be presented elsewhere.
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FIG. 4 (color online). Variance � vs n for (�) harmonic
potential V2 � 6:25t with N � 100, (4) quartic potential V4 �
15:82t with N � 150, (5) harmonic potential V2 �
10t
 cubic V3 � 2:5t
 quartic V4 � 7:5t with N � 50, and
(full line) unconfined periodic potential with N � 102 sites.
The curves correspond from top to bottom to U=t � 0; 2; 4; 8.
For a discussion of the insets, see the text.
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FIG. 5 (color online). Phase diagram for a system with
N � 100 (5) and N � 150 (�) sites. The phases are explained
in the text.
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Finally, we consider the phase diagram of the system.
As shown in Fig. 2, unlike the exponents, phase bounda-
ries seem to be rather sensitive to the choice of potential,
number of particles, and strength of the interaction. As in
the unconfined case, we would expect to be able to relate
systems with a different number of particles and/or sizes
by their density. Given the harmonic potential, a charac-
teristic length (in units of the lattice constant) is given by
N�4V2=t�

�1=2, such that a characteristic density can be
defined. Figure 5 shows that the characteristic density
~  �  

������������
4V2=t

p
( � Nf=N) is a meaningful quantity to

characterize the phase diagram. There, the phase dia-
grams for two systems with different sizes (N � 100
and N � 150) and different strength of the harmonic po-
tential (V2 � 15t and V2 � 11:25t, respectively) are de-
picted showing that such a scaling allows one to compare
systems with different sizes, different number of par-
ticles, and different strength of the potential. This makes
it possible to relate the results of numerical simulations to
much larger experimental systems. The different phases
obtained are a pure metal without insulating regions (A),
a Mott insulator at the center of the trap (B), a metallic
intrusion at the center of a Mott insulator (C), a ‘‘band
insulator’’ (i.e., with n � 2) at the center of the trap sur-
rounded by a metal (D), and finally a band insulator sur-
rounded by a metal, surrounded by a Mott insulator with
the outermost region being again a metal (E). Two fea-
tures are remarkable here. The first one is that on varying
the filling of the trap, a reentrant behavior is observed for
phase A. The density profile shows a shoulder as can be
seen in Fig. 1 before reaching the plateau with n � 2 but,
as shown by the inset of Fig. 4 for U � 4 around n � 1, it
is possible to go through a region with n � 1 without
reaching the value of the variance that corresponds to a
Mott insulator. The second intriguing feature is that the
boundary between the regions A and B remains at the
same value of the characteristic density for all values ofU
that could be simulated.

In summary, on the basis of QMC simulations of the
Hubbard model with a harmonic potential, we found a
number of new and unexpected features for the MMIT.
(i) A local compressibility �l that appropriately character-
izes Mott-insulating regions shows critical behavior on
entering those regions. Because of the microscopic nature
of the phases, spatial correlations appear not to contribute
to the critical behavior discussed here. This is a new form
of MMIT, not observed so far in simple periodic systems,
that might be realized in fermionic gases trapped on
optical lattices. Therefore, our observation adds a new
aspect to this long-standing problem in condensed matter
physics. We expect that a similar local critical behavior
will arise in higher dimensions as long as the spatial
extent of the Mott domain remains finite. (ii) Universal
behavior is found for �l for n! 1, independent of the
confining potential and/or strength of the interaction,
excluding, however, the unconfined case. Also universal
130403-4
behavior is found for the variance � when n! 1. In this
case, this behavior is shared by the unconfined model.
(iii) Finally, a proper scaling form for a characteristic
density is introduced that leads to a generic phase dia-
gram, with interesting features, as described in the para-
graph above.
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