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This Letter describes the generation of 2D colloidal lattices in microchannels by coupling the
laminar flow of dispersions of spherical colloids and geometrical confinement. We describe a non-
equilibrium, convective, mechanism leading to formation of ordered 2D structures of both closed-
packed hexagonal and non-closed-packed rhombic symmetries. The number and types of possible
lattices is determined by the ratio of the width of the channel to the diameter of the particle. The
structures tend to return to a regular lattice after a defect is introduced; that is, for example, they tend to
self-repair disorder induced by particle polydispersity, contaminants, and flow instabilities. The
stability of different lattices is analyzed numerically for particles with different polydispersity.
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Confinement-induced crystallization is a subject of
current interest, since it provides a route to periodic
structures, and allows the study of many-body interac-
tions [1-3]. Planar, micron-scale patterns can template
the crystallization of colloid particles both ‘“‘in-plane”
and ‘“out-of-plane,” in processes driven by gravitational,
capillary, or electrohydrodynamic forces [3]. These pro-
cesses generate close-packed structures: hexagonal 2D
lattices, and hcp or fcc 3D lattices. We describe the con-
vective growth of 2D colloidal lattices. We report forma-
tion of non-closed-packed structures, which have not
been observed previously in self-assembly of micro-
spheres. By contrast with other nonequilibrium growth
processes (e.g., percolation [4], diffusion-limited aggre-
gation [5], or cluster-cluster aggregation [6]), we obtain
ordered, periodic lattices with the geometry of the unit
cell controlled by the dimensions of the microfluidic
channel.

Formation of lattices in our experiments is an intrinsi-
cally nonequilibrium process. Assuming that the system
is close to equilibrium and stationary, the resulting latti-
ces should satisfy the postulate of the minimum entropy
production rate [7]. The energy of the particles in the
hydrodynamic drag field is, however, larger than kT by
several orders of magnitude. The combination of geomet-
rical confinement with unidirectional flow causes kinetic
entrapment of the ordered structures. The resulting 2D
lattices are therefore not an equilibrium solution yielding
a minimum of the appropriate energy functional (for ex-
ample, maximization of the interparticle contact area, or
the compactness of the structure). They satisfy only the
local minimal energy dissipation rate postulate. As we
use dilute suspensions of the microspheres, the particles
enter the channel one at a time, and the configurational
degrees of freedom are effectively reduced to the order in
which the beads are deposited.

Figure 1(a) illustrates schematically the organization of
microspheres in the microfluidic geometry. The micro-
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channel ends with one or more outlets narrower than the
diameter of the microbead. When a suspension is forced
through the channel, the particles deposit irreversibly at
the end, and nucleate the growth of a 2D lattice.

The flow of fluid through the voids between particles
can be considered as laminar flow through parallel capil-
laries [8] (in our experiments the Reynolds number, Re,
had values between 10 and 100). New particles approach-
ing the array flow passively and move to the interstitial
voids between the beads that have already assembled. The
voids in each layer act as a template to position the beads
in the next one. Meakin and Jullien predicted [9] that, for
monodisperse beads, this mechanism would lead to a
variety of lattices with large repeating units and packings
unstable with respect to small perturbations in particle

FIG. 1. (a) Flow-driven organization of spherical particles in
a microchannel. The shaded beads constitute the repeating unit.
The interlayer spacing / is shown on the right. (b) Diagram of
possible regular phases obtained for particles with radius R for
different values of L/2R. Each solid line corresponds to a given
number of particles n in a repeating unit. In the dashed area no
regular structures can be formed. Inset: Possible lattices ob-
tained for L/2R = 4.46.
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coordinates. In our experiments, we observed small num-
bers of stable, regular structures with small repeating
units. The difference between the experimental results
and the simulations arises from the fact that, in the
simulations, the beads are ideally monodisperse and are
deposited at, within the numerical accuracy, “ideal’”” po-
sitions. In the experiment, beads have a finite polydisper-
sity. This polydispersity can be viewed as a measure of
the perturbations introduced into an otherwise perfect
lattice. To our surprise, we observe that finite polydisper-
sity in fact stabilizes the lattices composed of small
repeat units.

The relationship between the width of the channel L,
the radius of a microbead R, the angle «, and the number
of “columns” n, parallel to the direction of flow [vertical
dashed lines in Fig. 1(a)] is L = 2R[(n — 1) sina + 1].
The number of possible regular structures is determined
by the ratio of the width of the channel L to the particle
diameter 2R [Fig. 1(b)]. A structure with a particular
value of a can be preserved only for discrete values of
the ratios L/2R [indicated by the horizontal dashed line
in Fig. 1(b)]. The solid lines show the dependence of & on
L/2R for a particular number of beads in the repeating
unit (n = const); as the width of the channel increases,
the lattice transforms from hexagonal (¢ = 30°) to rhom-
bic, and then again to hexagonal (a = 60°).

The most interesting situation occurs for L = const.
For L/2R > 2.5, more than one ordered structure can
form in a single channel. For example, we anticipate three
lattices for L/2R = 4.46 [indicated by the vertical
dashed line in Fig. 1(b), and by the inset]. On the basis
of the diagram, hexagonal lattices form only when
L/2R= (n+1)/2 (for @ =30°) and when L/2R =
1+ (n — 1)(/3/2) (for a = 60°).

We used soft lithography [10] to create microchannels
in poly(dimethylsiloxane) sheet, which we sealed to a
glass substrate. Experiments were conducted with aque-
ous dispersions of polystyrene beads (Duke Scientific).
Average diameters of the particles were 40, 80, and
100 wm, with standard deviations of 0.6, 0.8, and
1.6 pm, respectively. A colloidal dispersion with particle
concentration 0.2 wt % was pumped through the channels
using flow rates from 0.05 to 3.0 mL/ min. The density of
water was matched to the density of polystyrene (p =
1.05 g/cm?) by introducing KBr into the aqueous me-
dium. The structure of particle arrays was imaged with a
Leica DMRX microscope, coupled with a Nikon CCD
camera NXM1200.

Figure 2 shows representative fragments of the 2D
lattices obtained from 100-um spheres in microchannels
with height 130 um and widths between 207 and
463 pm. In channels with L/2R =2.22 and L/2R =
3.33 [Figs. 2(a) and 2(c)], we observed only rhombic
lattices, with @ = 37° and 50°, respectively. These values
of a were expected from the diagram [Fig. 1(b)]; for
L/2R = 3.33, however, the second rhombic structure
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FIG. 2. Fragments of 2D lattices generated from 100-um
beads in microchannels with L/2R: (a) 2.20, (b) 2.65,
(c) 3.33, (d) 3.71, (e) 4.46; (f) 5.11. Flow rate was 0.5 mL/ min.

with @ = 34° did not form. For L/2R equal to 2.65,
3.71, or 4.46, both rhombic and close-to-hexagonal latti-
ces were observed [Figs. 2(b), 2(d), and 2(e)]. We have
found that, out of the possible structures predicted by
geometrical considerations, those with a larger value of
a were formed more often. For example, for L/2R =
4.46, we have not observed the lattice with seven beads
in the repeating unit (e = 35.2°). For L/2R = 5.11, the
organization of particles became disordered. For this
L /2R ratio, the diagram in Fig. 1(b) predicted four latti-
ces. In general, we observe that as the ratio L/2R and
the number of possible lattices increase the system
switches between the different structures more often.
As a result, for L/2R > 5 the organization of beads is
largely disordered.

The lattices formed from 40- and 80-um beads were
similar to the lattices in Fig. 2. Figure 3 shows the
variation in & for rhombic structures obtained from 40-,
80-, and 100-um beads in channels with 2 < L/2R < 3.
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FIG. 3. Variation in angle « versus normalized channel width
L/2R for lattices containing three particles in the repeating

unit. The dashed line shows the variation in « estimated from
Fig. 1(b).
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For n = 3, experimental values of a correlated with the
expected ones. We did not, however, observe lattices with
a = 35°.

We summarize the characteristic features of particle
assembly induced by flow in microchannels qualitatively
as follows. The number of outlets at the end of the channel
(from 1 to 4) did not notably affect the organization of the
particles. Lattices with high periodicity formed when
channel height did not exceed particle diameter by
more than 30% [11]. The flow rate of the fluid was one
of the major factors influencing the growth of 2D crystals.
For 100-um particles, ordered arrays formed only when
the flow rate, Q, fell between ca. 0.3 to 2 mL/ min, for L
from 220 to 446 wm. Under these conditions, the indi-
vidual beads immobilized exactly between the micro-
spheres of the preceding layer. For Q < 0.1 and for
Q > 2 mL/ min, particle assembly became random.

One of the interesting features of particle assembly was
“self-healing” of the periodic structures. When the out-
lets were intentionally positioned in a way that interfered
with the growth of the colloid crystal, the organization of
the beads was affected only in the first 4—6 layers along
the axis of the channel; then the array reorganized and
grew in a periodic fashion [Fig. 4(a)]. When defects were
generated in the 2D lattice [by introducing a contaminant
[Fig. 4(b)], or a large bead [Fig. 4(c)], or as the result of an
instability in liquid flow [Fig. 4(d)]], the system lost its
periodicity for several layers of particles, but then re-
turned to a periodic lattice.

In microchannels accommodating both hexagonal and
rhombic structures, the transitions between them oc-
curred as a result of instabilities in flow or of the varia-
tions in the size of the microbeads. In order to examine
how the polydispersity of the particles [defined as o =
((R%) — (RY})'/2/(R)] influences the formation of ordered
lattices, we performed numerical simulations [12]. We
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FIG. 4. Effect of local perturbations on growth of 2D latti-
ces: (a) incommensurability of outlet position with lattice
structure; (b) presence of contaminant; (c) introduction of
large spheres; (d) flow instability.
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assumed that the interaction between the particles was
represented solely by hard-sphere repulsion, and did not
attempt to simulate the dynamics of the flow. Our interest
centered solely on geometrical packing. The starting con-
dition was given by the first layer of randomly positioned
particles. Then 1000 microbeads, with diameters drawn
from a Gaussian probability distribution centered on 2(R),
were placed in the farthest possible positions along the
direction of the flow; that is, in the voids between the
beads that were already deposited.

We tested several channel widths with characteristic
ratios L/2R. For each L/2R € (2,5) and o € (0,0.15),
100 numerical experiments were performed. The first 100
beads were neglected. Then for each particle we exam-
ined the extent of local order around it by tracing the
average vertical spacing, [ [Fig. 1(a)], between the neigh-
boring particles as A, = (1/N)Y; ;lz; — z;l, where p is
the particle index, and N denotes the number of particle
pairs (N = 50) examined. For a particular ratio L/2R, the
diagram in Fig. 1(b) gives the number N,; of possible
regular lattices. Each of them was characterized by an
angle a,where k € (1, Ny,,) and interlayer distance [, =
2R cos(a;). In further analysis, the local structure around
the pth particle was associated with the regular lattice for
which |A, — [;| was the smallest. The size m of the single
domain was defined as the number of beads in a particular
lattice.

Figure 5 shows the results for L/2R = 2.7. For this
ratio, we anticipated two regular structures: a close-to-
hexagonal structure (a; = 58.2°, [;/2R = 0.52) and a
rhombic lattice (a, = 34.5°, I,/2R = 0.82), both illus-
trated in Fig. 5. Figure 5(a) shows the variation in the
average number of beads, (m), in a single ordered domain
versus o. The value of (m) rapidly decreased with
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FIG. 5. Results of numerical experiments for channel width
L/2(R) = 2.7 for close-to-hexagonal (solid line) and rhombic
(dashed line) structures: The average number of particles in a
regular domain (a) and the fraction of beads in a lattice (b) are
plotted versus the standard deviation o in particle diameter.
The vertical dotted line corresponds to the standard deviation
of the beads used in the experiments.
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increasing o. For 0.01 < o <0.075, the hexagonal
structure exhibited a larger domain size than the rhombic
one. Figure 5(b) shows the fraction of beads in each of the
lattices. For small polydispersity, the probability of form-
ing a close-to-hexagonal structure was significantly
higher than the probability of forming a rhombic lattice.
For o > 0.02, however, the fraction of rhombic structures
gradually increased, and for o = 0.067 it became equal
to 0.5. This result agreed with experimental observations.

The results obtained for other values of L/2R were
similar. In general, low polydispersity o favored close-
packed lattices, while moderately polydisperse particles
assembled in rhombic structures. For o = 0.015, which
corresponds to the polydispersity of the beads used in our
experiments, we found that the system preferentially
formed the structure with a larger value of a [Fig. 1(b)].
This result from simulations agrees with the experimental
observations: For a particular value of L/2R, the lattices
with larger a were obtained more frequently than those
with smaller «, and we have not observed formation of a
structure with a < 35.

The results described in this Letter enhance our under-
standing of flow-driven crystallization of colloid particles
in confined geometries. Earlier studies yielded only close-
packed hexagonal and square lattices [3]. Here we de-
scribe conditions for formation of a range of centered
rectangular lattices. The variation in the angle a compen-
sates for incommensurability between the channel width
and particle size. We have also observed self-healing
ordered arrays: After perturbations induced local disor-
der, the system spontaneously reverted to growth in an
ordered fashion. Numerical simulations correctly pre-
dicted enhanced stability of the rhombic structures in
systems comprised of moderately polydisperse beads.
Non-close-packed structures of colloid beads may have
applications in creation of micrometer-scale fluid pumps,
particulate valves [13], and in mixing confluent streams
in microfluidics systems [14].
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