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Model for theVoltage Steps in the Breakdown of the Integer Quantum Hall Effect
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In samples used to maintain the U.S. resistance standard the breakdown of the dissipationless integer
quantum Hall effect occurs as a series of dissipative voltage steps. A mechanism for this type of
breakdown is proposed, based on the generation of magnetoexcitons when the quantum Hall fluid flows
past an ionized impurity above a critical velocity. The calculated generation rate gives a voltage step
height in good agreement with measurements on both electron and hole gases. We also compare this
model to a hydrodynamic description of breakdown.
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gives
In the integer quantum Hall effect (IQHE) regime [1], a
two-dimensional electron fluid carries an almost dissipa-
tionless current and the ratio of the current Ix to the Hall
voltage VH is quantized in units of e2=h. However, above a
critical current, the dissipative voltage Vx measured along
the direction of current flow increases rapidly, leading to
quantum Hall breakdown (QHBD). Several possible
mechanisms for QHBD [2] have been proposed: ava-
lanche heating [3], percolation due to an increase of
delocalized states [4], quasielastic inter-Landau level
scattering [5–7], acoustic phonon emission due to intra-
Landau level scattering [8], formation of compressible
metallic filaments [9], and resonant impurity scattering
of electrons [10].

For certain samples, including those used to maintain
the U.S. resistance standard at the National Institute of
Standards and Technology (NIST), breakdown occurs as
a series of up to 20 small steps in Vx, of roughly equal
height, �Vx ’ 5 mV, when the applied magnetic field B is
increased toward the minimum in Vx at 12:43 T, corre-
sponding to Landau level (LL) filling factor 
 � 2; see
Fig. 1 [11,12]. This shows a series of plots for 14 separate
upsweeps of B. Steps are also observed in the B down-
sweeps and are accompanied by hysteretic behavior.
These observations are fundamentally different from
those in which breakdown is observed as a single large
increase of Vx [3].

IQHE breakdown is not only of fundamental interest,
but is also relevant to quantum metrology since a large
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value of Ix can improve the measurement precision. In
this work we develop a theoretical model to account for
the dissipative steps observed by the NIST group [11,12]
and others [13,14]. We show that in the presence of
charged impurity-induced disorder the quantum Hall
fluid (QHF) is unstable when the local fluid velocity
exceeds a critical value. Under these conditions, magne-
toexciton or electron-hole (e-h) pair excitations are gen-
erated spontaneously near an impurity. The voltage step
height �Vx is directly related to the rate of formation of
the pairs, which we calculate using a parameter-free
model. This type of excitation of the QHF is analogous
to vortex-antivortex pair formation in classical or quan-
tum fluid flow around an obstacle [15].

Earlier work [16–18] has formulated a method for
calculating the excitation dispersion relation of e-h pairs
generated by exciting an electron from an occupied LL n
to an unoccupied LL �n � 1�, where n is the LL index. By
extending these models to include the electric field aris-
ing from a charged impurity and the Hall voltage drop
across the sample, we obtain a critical electric field at
which it costs no energy to generate an e-h pair at a given
wave vector Q. We incorporate this into a calculation of
the generation rate W of these pairs [19,20] due to a single
charged impurity. This then gives a dissipative voltage
increment �Vx.

Using the Fermi golden rule, we calculate the transi-
tion rate, Wn;�n�1�, from Landau state (n; kx) to (n � 1; k0x)
due to a single charged impurity in a QHF [19,20]. This
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2�
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where V�r� is the impurity Coulomb potential, �n�r?; kx� is the electronic eigenfunction, in the Landau gauge, in the x-y
plane, and �0�z� is the envelope function of the first electronic subband. We assume that the n lower LLs are filled and
the (n � 1) level is empty. There is thus no static screening of the impurity charge [21]. This gives
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Here � is the dielectric constant (for GaAs � � 0:11 nFm�1). If we assume that the impurity is located at the center of
the subband wave function then
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where
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�n�y � Ykx
� is the simple harmonic oscillator solution to the Schrödinger equation centered on Ykx
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is the

magnetic length, and B is the magnetic field. Calculating the transition rate out of state (n; kx) we find that
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where [16–18]
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and �n;�n�1��k
0
x � kx� includes the exchange and Coulomb

local-field corrections, which are independent of Ey. To
obtain Eq. (7) we have assumed e2=�aL � 
h!c; hence
we neglect LL mixing. In Eq. (6) there is an implicit
condition for k0x which must be calculated. This condition
can be obtained from Eq. (7) when �� � 0. If exchange
and Coulomb interactions are omitted this condition is
simply the same as for energy-conserving elastic inter-
Landau level transitions. However, when interaction
terms are included, Q � k0x � kx must be evaluated nu-
merically. Equation (7) can be split into two components:
the excitation interaction energy, given by the first two
terms, which is independent of Ey and the electrostatic
energy, eEyl2BQ. In Fig. 2 the crossing point of the elec-
trostatic energy (dashed line) and the excitation interac-
tion energy (solid line) gives the value of the e-h
separation (l2BQ) for which it costs no energy to generate
e-h pairs, i.e., �� � 0. To obtain the total rate of produc-
tion of e-h pairs, we take Eq. (6) and sum over all initial
FIG. 1. Step like breakdown in the integer quantum Hall
effect, from Ref. [11]. Each step contributes a multiple of ’
5 mV to the dissipative longitudinal voltage.
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states such that
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The above equation gives us the generation rate of e-h
pairs by a single charged impurity at given B and Ey.

Consider a local region of the sample where Ey is large
enough to create e-h pairs, due to scattering from a
charged impurity, at a rate given by Eq. (8). Such regions
can be expected to occur at high current, possibly near
the sample edge where the Hall field is expected to be
large [22,23]. A pair created close to an impurity will
drift along the Hall bar at a velocity v 
 Ey=B, so one
can imagine, for a fixed generation rate, a stream of e-h
pairs moving along the Hall bar. Then, for 
 � 2 a small
fraction of electrons in the lower LL (n � 0) have been
replaced by holes, and the previously empty upper LL
(n � 1) contains some electrons. As the e-h pairs move
away from the high field region, the spacing between
the electron and hole in a pair will increase and
most pairs will eventually ionize by acoustic phonon
emission. Because of the absence of empty states into
which the excited electron can relax, and neglecting
weak, second order Auger processes, we can assume
∆
ε

FIG. 2. The magnetoexciton mode energy, 
h!c �
e2=�4��lB��0;�1��Q� (solid line) for excitations from n � 0 to
n � 1, for Ey � 0; the dashed line is the electrostatic energy
eEyl2BQ. B � 12:3 T and Ey � 1:5� 106 V=m.
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that all the generated e-h pairs will eventually ionize and
lead to a dissipative current i � eW, flowing across the
Hall voltage equipotentials. At 
 � 2 this gives a dissi-
pative voltage

Vx �
hW
2e

: (9)

We now compare the results of our model with break-
down measurements which show voltage steps. The NIST
experiments on the U.S. resistance standard samples [11]
were carried out at 
 � 2 and B � 12:3 T. The experi-
ments show a series of dissipative steps in Vx of regular
height �Vx ’ 5 mV, see Fig. 1. In Fig. 3(a) we plot our
calculated dissipative voltage as a function of the back-
ground electric field Ey.

Since the rate of production of e-h pairs is strongly
influenced by the overlap between the wave functions in
the occupied (n � 0) and unoccupied (n � 1) LLs, it
increases rapidly at a critical electric field. This critical
electric field occurs when Eq. (9) gives a Vx comparable to
the small background dissipative voltage governed by )xx.
The rate, and hence Vx, then reaches a maximum when
the electric field is such that the e-h pairs are formed close
to the roton minimum of the magnetoexciton dispersion
curve, QlB 
 2:5. For a given Ey, for which the rate of
production of e-h pairs is finite, the pairs formed at the
breakdown point will relax, i.e., electrons in the upper LL
relax their energy by moving toward one side of the Hall
bar, while holes move in the opposite direction. This
process tends to screen the Hall field over much of the
Hall bar. Since the Hall voltage in the NIST experiments
remains at its quantized value over the magnetic field
range in which the dissipative steps occur, this screening
effect tends to enhance the electric field at the breakdown
point. Thus, as the critical electric field is reached, the
generation rate at the breakdown point increases rapidly,
inducing a further increase in Ey, due to the screening of
the Hall field in other regions of the Hall bar. For break-
down at a single charged impurity we therefore expect the
system to switch between two stable states, corresponding
to Vx � 0 and Vx 
 5:6 mV, which corresponds to the
maximum value of Vx in Fig. 3(a). In the NIST experi-
ments, a series of steps is observed, as seen in Fig. 1, and
we attribute each step to the formation of separate
FIG. 3. The dissipative voltage for (a) electron [11] and
(b) hole [15] gas samples, calculated from Eq. (9) as a function
of Ey. The parameters used refer to the experimental condi-
tions of [11,15]: (a) m? � 0:07me, Ns � 3� 1015 m�2 and B �
12:3 T; (b) m? � 0:4me, Ns � 1015 m�2 and B � 2:1 T.

126803-3
streams of e-h pairs generated by other charged impuri-
ties, i.e., each step is associated with the local electric
field at a particular impurity reaching its critical value.

The sharp transitions between steps and the hysteresis
measured on successive up/down sweeps may be due to
the redistribution of charge from the high field regions
where the breakdown is initiated to the other parts of the
sample. These two types of regions are known to be
weakly coupled under dissipationless conditions and the
instability could give rise to the sharp transition observed
in the experiments.

Figure 3(b) shows the results of a similar golden rule
calculation for the breakdown of the quantum Hall effect
(QHE) observed in a hole gas sample [14]. In these
experiments the step height was �Vx 
 1 mV. Our cal-
culation for this case gives �Vx � 1:6 mV, in qualitative
agreement with experiment.

The above values are derived from a model which
combines a calculation of the magnetoexciton dispersion
with an impurity-related tunneling rate.We have included
explicitly the mechanism for the tunneling between the
LLs and exchange and Coulomb local-field corrections.

An earlier paper by one of us [15] drew an analogy
between the process described here and the formation of
vortices behind an obstacle moving relative to a fluid (e.g.,
the von Karman vortex street in classical hydrodynam-
ics). Using our model we now examine this analogy more
closely. At the mean field level [24,25], the QHF in a field
corresponding to integer filling can be replaced by a
system of composite bosons in zero magnetic field. Such
a system forms a charged superfluid and one can view the
quantum Hall state as a composite Bose condensate. From
this, Stone [26] formulated an effective superfluid hydro-
dynamic model in which the charged elementary excita-
tions of the QHF appear naturally as vortices in the order
parameter for the composite boson superfluid. In this
language, our model for the QHBD is the spontaneous
creation of vortex-antivortex pairs when the QHF fluid
velocity around an impurity reaches a critical value [27].

Stone’s [26] equation of motion of the QHF is

m?� _vv� �v���� � e�E� v�B� �5

�
m?

2
jvj2 � *

�
;

(10)

where v is the velocity field, * is the local chemical
potential containing all the interaction terms, and � is
the fluid vorticity. Using Eq. (10), in conjunction with the
continuity equation for the density of the QHF, and
examining small pertubations in the velocity field of
the form

vx �
Ey

B
� �1cos�Qx � !t� (11)

and
vy � �2sin�Qx � !t�; (12)

we find that when 5* � 0,
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h! � �� � �eEylB�lBQ� � 
h!c: (13)
This result is equivalent to Eq. (7) in the absence of
interactions and for �� � 0 corresponds exactly to
the elastic inter-Landau level tunneling condition [7].
Alternatively within this hydrodynamic model it corre-
sponds to the condition required to generate a vortex-
antivortex pair at zero energy.

To make a direct comparison with our earlier quantum
mechanical calculation we need to evaluate the dissipa-
tive voltage drop along the sample due to the generation
of these vortex-antivortex pairs from a single impurity.
For a specific system we would have to rely on a numeri-
cal simulation of Eq. (10). However, we can make con-
siderable progress by implementing what we already
know about fluid mechanics [28]. Consider an obstacle
in the path of a fluid. At a low fluid velocity the flow
around the obstacle is laminar. When the flow rate is
increased vortex-antivortex pairs are formed in the vi-
cinity of the obstacle. However, a vortex street is not
formed until the flow is fast enough to free the vortex-
antivortex pairs from the local flow field near the ob-
stacle. In this steady state, each vortex-antivortex pair
moves away from the obstacle at a velocity governed by
the background fluid velocity. This analogy suggests that
the vortex-antivortex pair in a QHF moves away from the
impurity at a velocity given by Ey=B. From classical
hydrodynamics [28] it is also known that the distance
between each generated vortex-antivortex (l) pair is about
3 times the separation between a single vortex and anti-
vortex (d) (d=l � 0:28). Now consider two states for our
fluid. First, the state where the fluid flow is laminar, the
generation rate of vortex-antivortex pairs is zero. For the
state where we have a street of vortex-antivortex pairs we
have the condition �� � 0; hence from Eq. (13) we can
evaluate Ey=B. Dividing this velocity by the distance
between each vortex-antivortex pair [d � 0:28lB�lBQ�],
we obtain the rate of generation of vortex-antivortex
pairs, and can estimate the voltage drop along the Hall
bar to be

Vx �
0:28� 
h!c

e�lBQ�2
: (14)

We can evaluate Eq. (14) by referring back to the previous
quantum mechanical calculation to give us an estimate of
QlB. Taking the value for QlB for which the quantum
calculations give the maximum value for Vx we find that
�Vx � 4:8 mV for the electron gas (QlB 
 1:9) and
�Vx � 0:75 mV for the hole gas (QlB 
 1:1).

In summary, we have presented a quantum calculation
based on magnetoexciton generation at a charge impurity
to explain the presence of well-defined dissipative voltage
steps measured by several groups at the onset of QHBD.
We obtain a similar result using a hydrodynamical model
to describe the behavior of the QHF above a critical flow
velocity. The quantum model can be extended to predict
the magnitude of the voltage steps for all integer filling
factors and for the case of spin-dependent scattering by
126803-4
magnetic impurities. The fluid model can be developed to
investigate the nature of the QHBD for QHF flow through
more complex geometries, e.g., linear grid arrays [29] or
around a single circular obstacle [30].

This work was supported by the EPSRC. We thank
V. A. Volkov, O. Makarovsky, A. C. Neumann, P. C.
Main, and T. M. Fromhold for useful discussions. We are
grateful to NIST for use of the data shown in Fig. 1.
[1] K. von Klitzing et al., Phys. Rev. Lett. 45, 494 (1980).
[2] G. Nachtwei, Physica (Amsterdam) 4E, 79 (1999).
[3] S. Komiyama et al., Solid State Commun. 54, 479 (1985);

S. Komiyama et al., Phys. Rev. Lett. 77, 558 (1996);
S. Komiyama Y. Kawaguchi, and T. Osada, Phys. Rev.
B 61, 2014 (2000).

[4] S. A. Trugman, Phys. Rev. B 27, 7539 (1983).
[5] L. Eaves, P. S. S. Guimaraes, and J. C. Portal, J. Phys. C

17, 6177 (1984).
[6] O. Heinonen et al., Phys. Rev. B 30, 3016 (1984).
[7] L. Eaves and F.W. Sheard, Semicond. Sci. Technol. 1, 346

(1986).
[8] P. Streda and K. von Klitzing, J. Phys. C 17, L483 (1984).
[9] V. Tsemekhman et al., Phys. Rev. B 55, R10 201 (1997).

[10] V. L. Pokrovsky, L. P. Pryadko, and A. L. Talpov, J. Phys.
Condens. Matter 2, 1583 (1989).

[11] C. F. Lavine, M. E. Cage, and R. E. Elmquist, J. Res. Natl.
Inst. Stand. Technol. 99, 757 (1994).

[12] M. E. Cage et al., Phys. Rev. Lett. 51, 1374 (1983).
[13] L. Bliek et al., Surf. Sci. 196, 156 (1988); P. M. Mensz

and D. C. Tsui, Phys. Rev. B 40, 3919 (1989); G. Ebert
et al., J. Phys. C 16, 5441 (1983); V. G. Mokerov et al.,
JETP Lett. 47, 71 (1988); F. J. Ahlers et al., Semicond.
Sci. Technol. 8, 2062 (1993).

[14] L. Eaves et al., Physica (Amsterdam) 6E, 136 (2000).
[15] L. Eaves, Physica (Amsterdam) 298B, 1 (2001).
[16] I.V. Lerner and Yu. E. Lozovik, Sov. Phys. JETP 51, 588

(1980).
[17] C. Kallin and B. I. Halperin, Phys. Rev. B 30, 5655

(1984).
[18] A. H. MacDonald, J. Phys. C 18, 1003 (1985).
[19] C. Chaubet et al., Phys. Rev. B 52, 11178 (1995).
[20] T. Ando et al., Rev. Mod. Phys. 54, 437 (1982).
[21] S. Tamura and H. Kitagawa, Phys. Rev. B 40, 8485

(1989).
[22] A. H. MacDonald et al., Phys. Rev. B 28, 3648 (1983).
[23] P. F. Fontein et al., Phys. Rev. B 43, 12 090 (1991).
[24] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
[25] S. C. Zhang, H. Hansson, and S. A. Kivelson, Phys. Rev.

Lett. 62, 82 (1989); S. C. Zhang et al., Phys. Rev. Lett. 62,
980 (1989); D. H. Lee and S. C. Zhang, Phys. Rev. Lett.
66, 1220 (1991).

[26] M. Stone, Phys. Rev. B 42, 212 (1990).
[27] X. G. Wen and A. Zee, Phys. Rev. B 44, 274 (1991).
[28] B. S. Massey, Mechanics of Fluids (Chapman and Hall,

London, 1989), 6th ed.
[29] G. Nachtwei et al., Phys. Rev. B 57, 9937 (1998).
[30] Z. H. Lui et al., Phys. Rev. B 58, 4028 (1998).
126803-4


