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Orbital Mechanisms of Electron-Spin Manipulation by an Electric Field
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A theory of spin manipulation of quasi-two-dimensional (2D) electrons by a time-dependent gate
voltage applied to a quantum well is developed. The Dresselhaus and Rashba spin-orbit coupling
mechanisms are shown to be rather efficient for this purpose. The spin response to a perpendicular-to-
plane electric field is due to a deviation from the strict 2D limit and is controlled by the ratios of the
spin, cyclotron, and confinement frequencies. The dependence of this response on the magnetic field
direction is indicative of the strengths of the competing spin-orbit coupling mechanisms.
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on the electron’s orbital motion and the standard mecha- characteristic frequency of the parabolic potential,
Manipulating electron spins is one of the central prob-
lems of the growing field of semiconductor spintronics [1]
that is of critical importance for quantum computing and
information processing [2]. Most of the schemes proposed
for computing with electron spins in quantum dots (QDs)
and quantum wells (QWs) are based on using time-
dependent magnetic fields. However, for applications us-
ing time-dependent electric fields instead of magnetic
ones would be highly preferable, and various mechanisms
of spin-orbit interaction [3] open attractive possibilities
for electrical control of electron spins. Recently Kato et al.
[4] successfully manipulated 2D electron spins by a giga-
hertz electric field. They used a parabolic AlxGa1�xAs
QW formed by varying Al content x � x�z� across the
well. The structure was specially engineered to achieve
gate-voltage control of the g factor through its depen-
dence on x [5]. Similar data on the electrical control of the
g factor were reported for GaAs=AlGaAs [6] and Si=SiGe
[7] heterostructures. These results pave the way for ma-
nipulating electron spins in QDs individually.

Experimental success in achieving dynamical electric
manipulation of electron spins raises the question about
the dominant physical mechanisms controlling the cou-
pling of spins to the electric field. The ĝg-tensor modula-
tion resonance technique [4] is based on the different
dependence of the various ĝg-tensor components on the
gate voltage and works when the external magnetic field
B is tilted to the QW plane. Indeed, under these condi-
tions the operators ��ĝgB� and ��ĝg0B�, where � is the
Pauli matrix vector and ĝg0 � dĝg=dV is the derivative of ĝg
with respect to the gate voltage, do not commute. As a
result, a time-dependent gate voltage V�t� � V0 �
~VV sin�!t�	� leads to spin-flip transitions at the spin-
resonance frequency ! � !s � g�BB= �h, �B being the
Bohr magneton. The concept of the ĝg-tensor mechanism
of spin-flip transitions suggested using the region of a
very small ĝg tensor, jgj & 0:1, where ĝg is strongly aniso-
tropic and gate-voltage dependent [4].

In this Letter we develop the theory for a different
mechanism of gate-voltage induced spin resonance based
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nisms of spin-orbit coupling. This theory also requires a
tilted magnetic field but does not require the ĝg tensor to
be small. Just the opposite, the large g factors typical of
narrow-gap A3B5 compounds are advantageous. Electric
dipole spin resonance (EDSR) [3] is especially strong
when it is excited by an electric field lying in the QW
plane. However, we show that it is also strong enough in
the geometry when the time-dependent potential is ap-
plied to the gate; i.e., the time-dependent electric field is
perpendicular to the well. This geometry is the most
suitable for practical devices. Our results demonstrate
convincingly that efficient electrical spin manipulation
can be achieved through the orbital mechanisms of spin
coupling to the electric field.

Two basic mechanisms of the spin-orbit coupling of 2D
electrons are directly related to the symmetry properties
of QWs. They stem from the structure inversion asymme-
try (SIA) mechanism described by the Rashba term [8]
and the bulk inversion asymmetry (BIA) mechanism
described by the Dresselhaus term [9,10]. In GaAs QWs
both terms are usually of the same order of magnitude
[11] while in narrow-gap compounds like InAs the SIA
mechanism dominates. Developing a reliable experimen-
tal technique based on EDSR requires a tool that identi-
fies the spin-orbit mechanisms contributing to spin-flip
transitions and allows one to establish, as applied to
specific materials, the dominating mechanisms. To this
end, we find the EDSR intensity for the Dresselhaus and
Rashba models as a function of the B direction. We show
that the angular dependence of the EDSR intensity is a
unique characteristic of the various competing mecha-
nisms of spin-orbit coupling contributing to EDSR.

In what follows we consider electrons confined in a
parabolic QW along the z direction. Then the electron
Hamiltonian is ĤH � ĤH0 � ĤHZ � ĤHso � ĤHint�t�, where

ĤH 0 �
�h2k̂k2

2m
�
m!2

0z
2

2
and ĤHZ �

1

2
�B��ĝgB� (1)

are the orbital and Zeeman Hamiltonians, respec-
tively. Here m is the electron effective mass, !0 is the
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k̂k��ir�eA=�hc, A is the vector potential of the field
B��; ’�, and � and ’ are the polar and the azimuthal
angles of B. ĤHint�t� describes electron coupling to the
time-dependent electric field ~EE�t� that will be specified
below.We have chosen parabolic confinement because it is
known to be the only kind that can be solved exactly [12]
for the arbitrary B direction. The solution reveals the
basic regularities of EDSR, including its dependence on
the confinement strength. The spin-orbit interaction ĤHso

will be considered as a perturbation.
Because ĤH0 has quadratic form both in the momenta

and coordinates it can be diagonalized. Let us choose a
new Cartesian frame where the z0 axis is parallel to B and
the y0 axis is in the QW plane, the Landau gauge A �
�0; Bx0; 0�, and introduce new variables: � � x0 cos��
z0 sin�, and � � x0 sin�� z0 cos�. Then ĤH0 can be writ-
ten as the sum of two harmonic oscillators:

ĤH 0 �
1

2

X
���;�

�âa� âa
�
� � âa�� âa� � �h!�; (2)

where !2
���� � !2

ccos
2��!2

0sin
2��� �� and !2

���� �
!2

csin
2��!2

0cos
2��� �� are the frequencies of the

coupled cyclotron-confinement modes, E�n�; n�� �P
� �h!� �n� � 1=2� are the energy levels, and n�;� � 0

[12]. Here !c � eB=mc is the cyclotron frequency for
B k ẑz, and � is determined by the decoupling condition
sin2� � �!0=!c�

2 sin
2��� ���. The operators âa� and
âa�� are defined by the following relations: � � �0 �������������������
�h=2m!�

q
�âa�� � âa� � and k̂k� � i

������������������
m!�=2�h

q
�âa�� � âa� �. The

shifts in coordinates, �0 and �0, are related to the Landau
momentum, k � ky0 , as �0 cos�� �0 sin� � "2k, where
" � � �hc=eB�1=2 is the magnetic length. It is important
that the operators of the kinetic momenta in the original
frame, �k̂kx; k̂ky; k̂kz�, which are used in the following calcu-
lations, can be expressed as linear combinations of the
operators âa� and âa�� . The coefficients depend only on the
angles, � and ’, and the frequencies, !� and !�, and are
independent of �0, �0, and k. The frequencies !� ���
depend on the B direction. When !c <!0, !���� de-
creases from !c at � � 0 to zero at � � $=2, while
!���� increases from !0 to �!2

0 �!2
c�

1=2.
The term ĤHso in the time-independent part of the

Hamiltonian ĤH leads to a mixing of the spin levels. It is
convenient to eliminate this term, in the first order in ĤHso,
by a canonical transformation exp�T̂T� [3]. The operator T̂T
is nondiagonal in the orbital quantum numbers �n�; n��,
and its matrix elements are

hn0�;n
0
�;&

0jT̂Tjn�;n�;&i�
hn0�;n

0
�;&0jĤHsojn�;n�;&i

E&0 �n0�;n
0
���E&�n�;n��

; (3)

where & is the spin index. After the canonical transfor-
mation, the time-independent part of ĤH conserves the
electron spin projection on the magnetic field direction.

The motion in the direction of the time-dependent
electric field, ~EE�t� k ẑz, is confined by the parabolic po-
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tential; hence, the time-dependent interaction ĤHint�t� �
ez ~EE�t� is bounded. It does not depend on the spin, and the
z coordinate can be expressed in terms of âa� and âa�,

z �
X

���;�

������������������
�h=2m!�

q
c� �âa� � âa�� �; (4)

where c� � � sin��� ��, c� � cos��� ��. ĤHint�t� does
not depend on spin. However, the T̂T transformation of it
produces a commutator ẑzso � 
T̂T; z�; hence, z acquires a
spin-dependent part ẑzso. Spin-flip transitions are induced
only by the operator eẑzso ~EE�t�.

To find the intensities of the spin-flip transitions excited
by an electric field applied in the z direction, one should
calculate matrix elements of ẑzso that are nondiagonal in
spin projections and diagonal in the orbital quantum
numbers. We consider first the spin-flip matrix element
of ẑzso in the case when spin-orbit interaction ĤHso is
dominated by the Rashba term

ĤH R � (R�&xk̂ky � &yk̂kx�: (5)

Of course, the parabolic confinement that is symmetric in
z does not produce the Rashba term by itself. Therefore,
we introduce it phenomenologically, e.g., as originating
from the hexagonal symmetry of a wurtzite-type crystal.
A reliable estimate of the spin-orbit coupling constant
can be obtained today only for the BIA mechanism that is
considered below. To simplify equations and elucidate the
basic physics, we consider from now on the quantum
limit, when only the lowest electron level n� � n� � 0
is populated.

A cumbersome algebra using several identities relating
the frequencies !2

�;� and the angles � and � such as
!2
� tan� � !2

� tan��� �� results in a simple final equa-
tion for the matrix element of the spin-flip transition

h"jẑzsoj#iR � �
(R

2 �h
!c!s�!c �!s� sin2�


!2
���� �!2

s�
!2
���� �!2

s�
: (6)

The denominator of Eq. (6) can be rewritten explicitly as

!2

c!
2
0cos

2��!2
s�!

2
0 �!2

c �!2
s��. The factor sin2� that

vanishes both for � � 0 and � � $=2 reflects the impor-
tance of a tilted magnetic field.

The angular dependence of the EDSR intensity
I��;	� / jh"jẑzsoj#iRj

2 caused by the Rashba term is shown
in Fig. 1(a). Because of the poles of the denominator, the
EDSR intensity increases when !s approaches one of the
eigenfrequencies; practically, for !c <!0 only the pole
!���� � !s is important. In the strong confinement re-
gime, when !c;!s � !0, !� � !c cos� and becomes
the cyclotron frequency of 2D electrons in a tilted mag-
netic field. The sharpness of the resonance peak is cut off
by a level width and also by the level anticrossing caused
by the spin-orbit interaction.

When the spin-orbit Hamiltonian ĤHso is dominated by
the bulk Dresselhaus spin-orbit interaction, the calcula-
tion of ẑzso allows evaluating magnitudes of the EDSR for
specific A3B5 compounds. In the principal crystal axes,
126405-2



FIG. 1. Angular dependence of the EDSR intensity I��; ’�
for a �0; 0; 1� QW (in arbitrary units) calculated for (a) Rashba
SIA and (b) Dresselhaus BIA mechanisms. Parameter values
!s=!c � �0:17 (as in InAs) and !c=!0 � 0:5 (as in Ref. [4])
were used. To cut off the pole in I��; ’� at !2

���� � !2
s , an

imaginary part i! with ! � 0:08!c was added to !c.
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the 3D Dresselhaus spin-orbit Hamiltonian ĤH D reads

ĤH D � +�� � �̂��; where ,̂,x � k̂kyk̂kxk̂ky � k̂kzk̂kxk̂kz; (7)

,̂,y and ,̂,z can be derived by cyclic permutations, and + is
a parameter. We have found a general expression for the
matrix element h"jẑzsoj#iD for a 
0; 0; 1� QW in a A3B5

crystal. The angular dependence of the EDSR intensity
caused by the Dresselhaus term, I��;	� / jh"jẑzsoj#iDj

2, is
shown in Fig. 1(b). The expression for h"jẑzsoj#iD simplifies
in the strong confinement limit:

h"jẑzsoj#iD ’
+m

2 �h2
!c!s sin�

!0
!2
���� �!2

s�

� 
�!c �!s� cos� sin2’

� i�!ccos
2��!s� cos2’�: (8)

This equation describes a quasi-2D regime when ĤHD re-
duces to a 2D Dresselhaus term ĤHD � (D�&xkx � &yky�
with (D � �+hk2zi � �+m!0=2 �h. Equation (8) has a
pole at !c cos� � !s, similarly to Eq. (6) in the strong
confinement regime. A distinctive feature of the BIA
mechanism is a strong azimuthal dependence of the
EDSR intensity, I��;’�, that possesses a fourfold axis
symmetry. Remarkably, the contribution of the
Dresselhaus term does not vanish for an in-plane mag-
netic field, � � $=2. Indeed, general theoretical argu-
ments do not require the vanishing of the EDSR signal
in this geometry and the difference in the effect of the
Dresselhaus and Rashba terms reflects a higher symme-
try of the latter. In this geometry, the EDSR inten-
sity does not depend on !s, which drops from Eq. (8)
because !��$=2� � 0 and shows an especially strong
azimuthal dependence on the magnetic field direction,
I�$=2; ’� / cos22’.

Figure 1 shows a drastic difference in the EDSR angu-
lar dependences caused by the BIA and SIA mechanisms.
The fourfold symmetry of the EDSR angular dependence
should be broken when the contributions from both
mechanisms to the EDSR amplitude are of comparable
magnitude. (This is also true for breaking the symmetry
of the energy spectrum [3,11].) Figure 1 shows convinc-
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ingly that the angular dependence of EDSR is a powerful
tool for identifying contributions of the different com-
peting mechanisms of spin-orbit coupling.

The efficiency of the BIA mechanism of EDSR can be
evaluated by using the characteristic length, lD, that is
equal to the matrix element of ẑzso. Equation (8) gives lD �
+m=2 �h2 when all frequencies are of the same order of
magnitude, !0 �!c �!s. We estimate lD � 10�9 to
10�8 cm using a typical value m� 0:05m0 for the mass
and also + � 20 eV �A3 for GaAs and 200 eV �A3 for InSb
or GaSb [13]. It is much larger than the electron Compton
length, "-C � �h=m0c � 4� 10�11 cm, that plays the role
of a characteristic length for EPR [14]. Therefore, elec-
trical manipulation of electron spins is preferable to
magnetic not only because it allows access to the spins
at a nanometer scale but also because a larger coupling
constant can be achieved.

However, there are several factors related to the elec-
tron confinement in a QW that can reduce lD. It is seen
from Eq. (8) that the confinement frequency !0 appears
in the denominator; therefore, lD includes a small factor
!c=!0 � 1. The factor !c=!0 reflects the deviation of
the system from a strictly 2D geometry that is a critical
condition for the gate-voltage controlled EDSR (the strict
2D limit corresponds to !0 ! 1). This factor was not
really small in the Kato et al. experiment, !c=!0 � 0:5,
because a wide parabolic well with effective width about
50 nm and a strong magnetic field B � 6 T were used [4].
In such a well (D � 0:3� 10�10 eV cm, which is much
less than the typical value of the Rashba constant (R �
10�9 eV cm for InAs based QWs [15], and even larger
values (R � �3–6� � 10�9 eV cm were reported in
Ref. [16]. This fact suggests that using asymmetric QWs
should provide considerable advantages, and the corre-
sponding length lR may be larger than lD. However,
specific calculations of (R depend strongly on the bound-
ary conditions [17], and the dependence of (R on the QW
width has not been investigated.

Both lD and lR are also reduced because of the spin-flip
frequency !s in the numerators of Eqs. (6) and (8). It
introduces a numerical factor !s=!c � gm=2m0 that is
about 0.16 in GaSb and InAs and about 0.32 in InSb.
Therefore, usually !s=!0 rather than !c=!0 is the factor
controlling the intensity of EDSR. It originates because
of the parabolic confinement in the z direction; a similar
factor appears in the theory for impurity centers [3].
For an in-plane magnetic field, motion in the B direc-
tion becomes unrestricted, and that is why !s cancels
in Eq. (8). In this case lD � �+m=2 �h2��!c=!0�. There-
fore, the orbital mechanisms of spin-orbit coupling can
provide a strong EDSR only if the ratio !s=!c is not
too small.

Another mechanism of EDSR, explored experimen-
tally by McCombe et al. [18] for bulk InSb, is related to
the anomalous coordinate r̂rso � l2so�� � k̂k� introduced by
Yafet [19]. The expression for l2so in the framework of the
Kane model is lso � �h�jgj=4m0EG�

1=2, where EG is the
126405-3
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forbidden gap [19,20]. It is rather large, lso * 10�8 cm.
However, the operator r̂rso itself allows only the transi-
tions at the combinational frequencies !� �!s; hence, it
can produce spin-flip transitions only in the second order
of perturbation theory, in combination with some differ-
ent mechanism, e.g., QW asymmetry. As a result, the
corresponding length lr is much smaller than lso. For a
strongly asymmetric QW, the upper bound for this length
is lr � � �h!s=EG�Lconf , where Lconf �

����������������
�h=m!0

p
is the con-

finement length. We are not aware of any more specific
experimental or numerical data on lr.

The z dependence of the ĝg tensor that allows efficient
electric control of the Zeeman splitting [4,5] also results
in a spin-orbit coupling because ĤHZ � �B��ĝg�z�B�=2
includes both the coordinate z and Pauli matrices. The
magnitude of the electron spin coupling to the time-
dependent voltage V�t� is about ��B

~VV�dg=dV�B, where
B � 6 T. The derivative dg=dV is about dg=dV�g=V0

with g�0:1 and V0�1V; see Fig. 2B of Ref. [4]. With
~VV � ~EEw and w � 100 nm, the characteristic length lg
caused by the spatial dependence of ĝg is lg�"-CgwB=
V0�7�10�10 cm. It should be compared with lD that
turned out to be negligibly small, lD & 10�11 cm, due to
an anomalously small g factor in GaAs (the ratio !s=
!c � gm=2m0 & 10�2). These estimates show that the
spin manipulation by Kato et al. [4] was performed with a
spin-orbit length l at the level of l � 7� 10�10 cm [21].

In most narrow-gap semiconductors with their large g
factors, and especially in those with strong spin-orbit
coupling, the BIA and SIA orbital mechanisms dominate
the coupling of electron spins to a field ~EE�t� in moderate
and strong magnetic fields. The spin relaxation rate
caused by this coupling can be rather modest because it
is suppressed by the strong magnetic field [22]. Therefore,
spin operation by the field ~EE�t� should be efficient enough.
Relative contributions of the various spin-flip transition
mechanisms depend strongly on the specific semiconduc-
tor material [23] and the geometry of the QW.

In conclusion, we have shown that the dynamic spin
response to an electric field perpendicular to the QW
plane is controlled by the deviation of the confined elec-
trons from strictly 2D behavior. The response of the spin
system to the gate voltage depends strongly on the ratio of
the confinement layer thickness to the magnetic length,
which should not be too small. Semiconductors with large
g factors are advantageous for gate-voltage driven EDSR.
Mixing the in-plane and perpendicular orbital motion is
critical for EDSR, and for a �0; 0; 1� QW it requires that
the magnetic field is tilted. The dependence of the spin-
resonance intensity on the magnetic field direction with
respect to the crystal axes is indicative of the role of the
various mechanisms of spin-orbit coupling involved.
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