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We consider a system of globally coupled rotors, described by a set of Langevin equations, and
examine the stability of the incoherent phase. The corresponding Fokker-Planck equation, providing a
unified description of microcanonical and canonical ensembles, bears a few solutions, depending upon
the ensemble. It is found that the stability of each solution varies differently with the temperature,
revealing the inequivalence between the two ensembles. This also suggests a physical explanation of the
quasistationarity observed in recent numerical results.
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lution of the controversy. solution of Eq. (4) is given by the canonical distribution
A system of oscillators, coupled sinusoidally with each
other, provides a prototype model for a variety of oscil-
latory phenomena in nature. With short-range coupling,
i.e., nearest-neighbor interactions, such an oscillator sys-
tem describes an array of Josephson junctions which has
been a subject of extensive studies [1]. The opposite limit,
corresponding to infinite-range interactions, leads to a
system of globally coupled rotors, which simulates those
systems having long-range forces in physics and biology.
In spite of the mean-field character of such a system
of globally coupled rotors, the system turned out to ex-
hibit rich features in dynamical and statistical properties
[2–7]. Specifically, one can find an analytic solution in
the canonical ensemble and the system has an equilib-
rium phase transition at a finite critical temperature in the
ferromagnetic case. On the other hand, direct dynamical
simulations reveal that it takes quite a long time for the
system to reach the thermodynamic equilibrium [3,6].
This anomalous diffusion phenomenon, dubbed quasista-
tionarity, is observed only in microcanonical calcula-
tions, thus suggesting that there may exist inequivalence
between microcanonical and canonical ensembles. Such a
quasistationary state is believed to survive down well
below the equilibrium critical temperature, attracting
recently much attention together with controversy [5,7].

This work is to examine the stability of the incoherent
(paramagnetic) phase in the system of globally coupled
rotors and to provide an explanation as to the origin of the
inequivalence between microcanonical and canonical en-
sembles. We consider the Fokker-Planck equation (FPE),
which governs the time evolution of the system in both
ensembles and thus provides a unified description, and
obtain its stationary solutions, depending on the en-
semble. The stability of each solution is probed and found
to behave differently with the temperature. In particular,
the microcanonical ensemble gives rise to additional in-
coherent solutions, which turn out to be neutrally stable
even below the critical temperature. Such neutral stability
may give rise to quasistationarity, thus suggesting a reso-
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The dynamics of the coupled rotor system is governed
by the set of equations of motion for the phase �i of the
ith rotor:

M ���i �
X
j

Jij sin��i ��j� � 0; (1)

where M is the inertia of each rotor and Jij represents the
coupling strength between rotors i and j. With the intro-
duction of the canonical momentum pi � M _��i, the above
equations are transformed into a set of canonical equa-
tions with the Hamiltonian

H �
X
i

p2
i

2M
�

X
i<j

Jij cos��i ��j�; (2)

on which the microcanonical description is based.
On the other hand, in the canonical description the

system is in contact with a heat reservoir of temperature
T and described, in a most general way, by the set of
Langevin equations:

M ���i � 
 _��i �
X
j

Jij sin��i ��j� � 
i; (3)

where 
 is the damping coefficient and the Gaussian
white noise 
i�t� is characterized by the average h
i�t�i �
0 and the correlation h
i�t�
j�t0�i � 2
T�ij��t� t0�. It is
straightforward from Eq. (3) to derive the FPE for the
probability distribution P��i; pi; t�:
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�
P:

(4)

Note that Eq. (3) with 
 set equal to zero reduces to
Eq. (1), showing that Eq. (4) provides the starting point
for both descriptions: the microcanonical one (
 � 0) and
the canonical one (
 � 0). In particular, the stationary
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P�0���i; pi� / e�H =T with the very Hamiltonian in Eq. (2)
regardless of 
 being zero or not.

In the case of global coupling Jij � J=N, the set in
Eq. (3) decouples into a single-particle equation:

M ���� 
 _��� J�sin��� �� � 
; (5)

where the order parameter �ei� 
 N�1
P

N
i ei�i measures

the emergence of coherence in the system and the rotor
index i has been suppressed. This in turn leads to the FPE
for the single-rotor probability distribution P��;p; t�:
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M
p� J�sin��� �� � 
T

@
@p

�
P; (6)

which reduces, in the absence of damping (
 � 0), to the
FPE for the microcanonical ensemble:

@P
@t

� �
p
M

@P
@�

� J�sin��� ��
@P
@p

: (7)

In terms of this probability distribution, the order pa-
rameter is simply given by �ei� � hei�i, where h� � �i
denotes the average over the distribution P��;p; t�. As
pointed out for the general case, both Eqs. (6) and (7)
support the same stationary solution P�0���;p� �
Z�1e�H =T with the single-particle Hamiltonian

H �
p2

2M
� J�cos�; (8)

where the overall phase � manifesting the U(1) symmetry
has been absorbed into the definition of �. Note that T
is given in Eq. (6) but remains arbitrary for Eq. (7): In
the microcanonical ensemble, the temperature should be
defined as a measure of the average kinetic energy accord-
ing to hp2i 
 MT. The partition function is determined
by normalization: Z � �2���1

R
dp

R
d� e�H =T ���������������

2�MT
p

I0�x�, where I0�x� is the modified Bessel function
of the zeroth order with x 
 J�=T.

This approach based on the FPE thus provides a unified
description of microcanonical and canonical ensembles,
and makes clear that both ensembles generate the same
equilibrium behavior [2], described solely by the same
stationary distribution P�0���;p�. Namely, in both en-
sembles the equilibrium order parameter is given by

� �
Z

dp
Z d�

2�
P�0���;p�ei� �

1

I0�x�

Z d�
2�

ei�ex cos�;

which, upon expanding ex cos� in terms of the modified
Bessel functions, yields

T
J
x �

I1�x�
I0�x�

: (9)

This determines whether the system exhibits coherence
(� � 0): The ordered phase emerges when T=J is smaller
than the slope of I1�x�=I0�x� at x � 0, and the ferromag-
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netic system (J > 0) undergoes a phase transition at the
critical temperature Tc � J=2.

We now turn our attention to the stability of the in-
coherent phase, which depends crucially on the ensemble
employed, as shown below. For � � 0, the stationary
solution P�0���;p� reduces to the Maxwell distribution,
describing the incoherent phase. Unlike Eq. (6), however,
Eq. (7), the FPE for the microcanonical ensemble, allows
(incoherent) solutions of the general form: P�0���;p� �
f0�p�, an arbitrary function of p, including the Maxwell
distribution. Note that the uniformity in � guarantees
� � 0 since

R
d�ei� � 0. To probe the stability of this

stationary solution, we write P��;p; t� � f0�p� �
f1��;p; t� and, accordingly, ��t� � �0 � �1�t� [with
�0 � 0 and �1�t� �

R
dp

R d�
2� f1��;p; t�ei�] in Eq. (7),

which leads to the stability equation

@f1
@t

� �
p
M

@f1
@�

� J�1 sin�
df0
dp

: (10)

Since f1��;p; t� and �1�t� are periodic in �, one can
Fourier decompose them into plane waves:

f1��;p; t� �
X
k

Z
d!ei�k��!t� ~ffk�p;!�;

�1�t� �
Z

d! e�i!t
Z

dp ~ff�1�p;!�: (11)

Note here that the perturbed order parameter is propor-
tional only to ~ff�1�p;!�. Substituting Eq. (11) into
Eq. (10), one finds the following relations:

0 �

�
!�

kp
M

	
~ffk�p;!�

�
J
2

�Z
dp0 ~ff�1�p0; !�

�
��k;1 � �k;�1�

df0
dp

; (12)

satisfied by the Fourier coefficients. Provided ! � kp=M,
it is obvious that all Fourier coefficients vanish except
those corresponding to k � 
1. When ! � kp=M, we
have a continuous spectrum which corresponds to a time-
dependent solution of the FPE with � � 0; this will be
discussed later. For k � 
1, we divide Eq. (12) by �!�
p=M� and integrate over p, to obtain

�1� ��!��
Z

dp ~ff�1�p;!� � 0; (13)

where the response function is given by

��!� �
JM
2

Z
dp

f00�p�
p� ~!!

; (14)

with f00�p� 
 df0=dp and ~!! 
 M!. Accordingly, for a
nontrivial solution, we must have 1� ��!� � 0. Since
��!� in Eq. (14) has a simple pole at p � � ~!! on the
complex p plane on which the integration is performed,
one needs to extend the frequency to complex values, i.e.,
~!! � ~!!r � i ~!!i. The appropriate analytic continuation
124101-2
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then leads to the following relation, depending on the
imaginary part of ~!!:

2

JM
��!� �

8>>><
>>>:

R
1
�1 dp

f00�p�
p� ~!! for !i > 0

P
R
1
�1 dp

f00�p�
p� ~!! � i�f00�� ~!!� for !i � 0R

1
�1 dp

f00�p�
p� ~!! � 2i�f00�� ~!!� for !i < 0;

where P stands for the principal part.
We thus have three different situations to determine the

frequency: When !i > 0, the perturbation �1�t� grows
indefinitely to make the unperturbed solution �0 �� 0�
unstable. In this case, the conditions for the real and the
imaginary parts of the frequency to satisfy are8><

>:
2
JM �

R
1
�1 dp

�p� ~!!r�f00�p�
�p� ~!!r�

2� ~!!2
i
� 0R

1
�1 dp

f00�p�
�p� ~!!r�

2� ~!!2
i
� 0:

(15)

In the opposite case (!i < 0), the perturbation dies out to
make the system stable. The condition is then given by8><
>:

2
JM �

R
1
�1 dp

�p� ~!!r�f
0
0�p�

�p� ~!!r�
2� ~!!2

i
� 2� Im f00�� ~!!� � 0

~!!i

R
1
�1 dp

f00�p�
�p� ~!!r�

2� ~!!2
i
� 2�Re f00�� ~!!� � 0:

(16)

Finally, when !i � 0, the condition simply reads(
2
JM � P

R
1
�1 dp

f00�p�
p� ~!!r

� 0

f00�� ~!!r� � 0;
(17)

and the system is characterized by the neutral stability,
oscillating with frequency !r. When this condition is
met, the system may stay in this state rather a long time
presumably until higher-order nonlinear terms come into
play and break neutrality.

We are now ready to discuss the stability of the inco-
herent phase associated with various solutions of the FPE:
the uniform distribution and the rotating distribution as
well as the Maxwell distribution; the first two exist only
for the microcanonical ensemble while the third for both
ensembles.

Uniform distribution.—In this simplest case, momenta
are distributed uniformly in the range ���;��, i.e.,
f0�p� � 1=2� for ��< p< �. Known as a water-bag
distribution, this has been adopted in most dynamical
calculations performed thus far. Substitution of f00�p� �
�2���1���p� �� � ��p� ��� into Eqs. (15)–(17), de-
pending on the sign of !i, leads to

!i � 


���������������������������
J
2M

�

�
�
M

	
2

s
; !r � 0 for �< �1;

!r � 


��������������������������
�
M

	
2
�

J
2M

s
; !i � 0 for � > �1;

(18)

which indicates that the frequency of �1�t� and f1�t� has
124101-3
only the imaginary/real part for � smaller/larger than
�1 


�������������
JM=2

p
. Recalling the definition of the temperature

in the microcanonical description, we have T �
hp2i=M � �2=3M, from which we find T1 � J=6. At
low temperatures (T < T1), the frequency of the pertur-
bation has the imaginary part, giving rise to the growth
(as well as decay) of the perturbation. Accordingly, the
solution is unstable. However, at temperatures T > T1, the
system oscillates with the (real) frequency, and neither
dissipation nor growth can be observed. We point out here
that T1 above which the neutral stability emerges is well
below the mean-field critical temperature Tc � J=2. This
is precisely what has been observed in various numerical
simulations based on the microcanonical ensemble:
Starting from the incoherent initial configuration (�0 �
0) with the uniform distribution, many authors reported
that the system remains in the incoherent state for a long
time, before it eventually falls into the coherent state
(�0 � 0). Such quasistationarity persists down well be-
low Tc [8], but the present analysis shows that it ceases to
exist below T1.

Maxwell distribution.—We next consider the Maxwell
distribution, f0�p� � �2�MT��1=2e�p2=2MT . For !i > 0,
substituting f00�p� � ��p=MT�f0�p� into Eq. (15) and
noting f00��p� � �f00�p�, we find that !r � 0 is clearly
a solution of the second one in Eq. (15). From the first of
Eq. (15), we obtain

1�
2T
J

�
����
�

p
yey

2
erfc�y�; (19)

where erfc�y� is the complementary error function with
y 


�������������
M=2T

p
!i. Since the right-hand side is monotoni-

cally increasing from zero to unity as y grows from zero,
there is one real solution present for T < J=2 and no
solution for T > J=2. This implies that the system is
unstable for T < J=2 due to the presence of the solution
!i > 0. For !i < 0, we first note

f00� ~!!r � i ~!!i� � �
~!!r � i ~!!i������������������
2�M3T3

p e�� ~!!2
r� ~!!2

i �=2MTe�i ~!!r ~!!i=MT;

from which we see Re f00� ~!!r � i ~!!i� � 0 for ~!!r � 0 while
Im f00�i ~!!i� � ��2�M3T3��1=2!i e ~!!2

i =2MT . This suggests
that ~!!r � 0 is again a solution of the second equation
in Eq. (16), whereas the first one reduces to

2T
J

� 1 �
����
�

p
jyjey

2
�2� erfc�jyj��: (20)

Similarly to the !i > 0 case, the right-hand side of the
above equation is monotonically increasing with jyj, ren-
dering a solution !i < 0 only for T > J=2. Finally, when
!i � 0, we have also !r � 0 from f00�� ~!!r� � 0; this
trivial solution appears at T � J=2, seen from the first
equation of (17). We thus conclude that the Maxwell
distribution, leading to the incoherent phase at T > Tc �
124101-3



TABLE I. Stability of the incoherent phase for various dis-
tributions. Whereas the Maxwell distribution corresponds to
both ensembles, the other two correspond only to the micro-
canonical ensemble. The letters s, n, and u stand for stable,
neutrally stable, and unstable, respectively.

Maxwell Uniform Rotating

J=2< T s n n
J=3< T < J=2 u n n
J=6< T < J=3 u n u

T < J=6 u u u
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J=2, becomes unstable below Tc, where coherence
develops.

This conclusion holds also for the canonical ensemble,
where the Maxwell distribution is the only stationary
distribution: Equation (6) leads to the stability equation
in the form of Eq. (10) with the additional term depending
on 
; this, however, has no effects on the perturbation in
�, giving rise to the same instability below Tc.

Rotating distribution.—In addition to the time-inde-
pendent solutions discussed thus far, Eq. (7) also pos-
sesses a time-dependent solution of the general form
P�0���;p; t� � u��� pt=M� for � � 0. In this rotating
solution, the phase grows continuously with a continuous
spectrum as mentioned previously. Requiring periodicity
in �, we write

P�0���;p; t� �
X
k

eik����p=M��tFk�p�; (21)

where Fk�p� is an arbitrary function except for F
1�p� �
0 due to � � 0. The stability analysis for this solution is
entirely similar to that of stationary solutions and will not
be repeated here. The response function is given by

��!� �
JM
2

Z
dp

�
F0
0�p�

p� ~!!
�

F0
�2�p�

p� ~!!

�
; (22)

in place of Eq. (14), and appropriate changes should be
made in the subsequent equations through (17). Although
one can consider various distributions for Fk [9], we
quote only the results from uniform distributions for
F0�p� and F�2�p�, with the distribution width 2� as
previously:

!i � 


������������������������
J
M

�

�
�
M

	
2

s
; !r � 0 for �< �2;

!r � 


������������������������
�
M

	
2
�

J
M

s
; !i � 0 for � > �2;

(23)

with �2 
 J=M. Again, one can relate the average kinetic
energy with the temperature: T � hp2i=M � �2=3M,
from which one has T2 � �2

2=3M � J=3. Thus, the rotat-
ing solution has neutral stability for T > T2 and becomes
unstable below T2. Note once again that T2 is lower than
the equilibrium critical temperature Tc.

Table I summarizes our results of the stability analysis
for various solutions, depending on the temperature.
While coherence develops in equilibrium below the tran-
sition temperature Tc � J=2, the dynamic behavior of the
incoherent phase depends on the ensemble: In the canoni-
cal ensemble, the Maxwell distribution is the only sta-
tionary distribution corresponding to the incoherent
phase and becomes unstable below Tc. On the other
hand, the microcanonical ensemble gives rise to addi-
124101-4
tional distributions such as the uniform and the rotating
one, which remain neutrally stable even below Tc. Putting
these together, we are led to the plausible conclusion that
the quasistationarity found in numerical simulations be-
low Tc has its origin in the neutrally stable solutions in the
microcanonical ensemble and will not appear in the
canonical ensemble.

Similar calculations for the antiferromagnetic system
(with J < 0), where coherence does not emerge [see
Eq. (9)] show that all three types of solutions are always
neutrally stable [9]. This may give a clue to nature of the
nonstationary behavior observed recently [10].
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