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Exactness of the General Two-Body Cluster Expansion in Many-Body Quantum Theory
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We show that the exact ground-state wave function for an arbitrary two-body Hamiltonian in second-
quantized, finite basis set, form cannot generally be represented by a generalized coupled-cluster
operator with real finite matrix elements acting on an arbitrary initial trial function.
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Recently it has been suggested that it may be possible
to represent the exact ground-state wave function of an
arbitrary many-fermion system with only pairwise forces
by an exponential cluster expansion involving a general
two-body operator [1-5]. This speculation has been sup-
ported by numerical examples that are exact within the
limits of the computations reported. Here we will show
that this result cannot generally be true.

Specifically, if we consider the representation of all
operators in a finite basis of dimension r for a system with
N electrons, the general Hamiltonian involving only
zero- (i.e., constant), one-, and two-body operators sym-
metric in the particles may always be written in terms of
annihilation and creation operators as

H=> hyabala,a,. (1)

For an H of interest in electronic structure calculations,
the operator is real, Hermitian, symmetric in the par-
ticles, and independent of spin. The proposition is then
that the exact ground-state wave function for this second-
quantized Hamiltonian may be written as

(H—-E)W¥ =0, ¥ = exp(W)D, (2)
where W has the same form as H
W = Z w%a;a;asar, 3)

and ® is an arbitrary initial guess not orthogonal to W.
Here we will be considering the realistic case where r —
N > N > 4 so that it requires of the order of ¥ coef-
ficients to specify W as a linear combination of configu-
rations while H and W both contain only of the order of r*
parameters. In all examples in the literature the matrix
elements in W have been constrained to be real and we
will make that assumption here. Therefore exp(W) can
approach zero only if some matrix elements defining W
become infinite.

As is well known, there is at least one example of a W
of the form of Eq. (3), namely

W = }Lrilo(—tH). ()]

Further, W is not unique if ¥ and ® are both eigenfunc-
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PACS numbers: 31.10.+z, 31.15.—p, 31.25.—v

tions of zero-, one-, or two-body operators that commute
with H. Such operators often include the unit operator 1,
the total spin in the z direction S, the square of the total
spin S2, and the sum P, of all pairwise permutations.

Hence, if W works, so does W —al—5b S, —c S* —
d P,. In the numerical examples in the literature the
authors were able to find a W with real finite matrix
elements that gave extremely accurate results, so we will
consider that case here. If W has only real finite elements,
then exp(—W) is the inverse of exp(W). Since a W with
finite matrix elements differs from Eq. (4), the literature
implicitly assumes that W is nonunique in ways other
than the one mentioned here.

It is easy to find an example where a different choice of
W can be shown to be exact. The Hamiltonian defined as

N/2 ) '
H= Z h;+N/2(q;+N/2 + q;+N/2),

i=1 (5)
q{ e a;faa;-rﬁa,-ﬁam,
involving only disjoint double replacements has an
eigenfunction

T = exp(W)D, b = aI,/ZaaI,/ZﬁmaIaaIwO),

& i+N/2 ©)
W= Z q; %,
i=1

which is of the usual coupled-cluster (CC) doubles form.
Here o and S label the spin of the orbitals. Notice this W
is independent of the A/ matrix elements and will be the
ground state if all &/ are negative. Piecuch er al. [5] had
suggested that W should be restricted to be Hermitian and
of the same form and symmetry as H in agreement with
Eq. (4), but W in this example, like the usual CC operator,
is not Hermitian. Also it should be noted that W used by
Voorhis and Head-Gordon [4] was not Hermitian.
Nevertheless, both Voorhis and Head-Gordon and
Piecuch et al. obtained results that were exact to within
numerical accuracy.

Another example where W is known to exist is if H is
actually a one-body operator written in two-body form.
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In this case its eigenfunction, ¥y, can be chosen to be a
Slater determinant. Thouless [6] showed that any Slater
determinant W, can be derived from any other one @, by
a transformation of the form exp(W)®, where W is also
only a one-body operator. We may [7] choose W to be skew
symmetric so that exp(W) is unitary. Notice ®; must be
the eigenfunction of some other operator H; given by
exp(—W)H exp(W). Expansion of this form for H; in a
power series in W is easily shown to involve only one-
body operators because commutators of one-body opera-
tors are still one-body operators. Hence H; will also be a
Hermitian one-body operator which is consistent with the
assumed single Slater determinant form for @;. For the
general two-body case, ® must also be the eigenfunction
of H, given by exp(—W) H exp(W) if W is finite, but in
this case H, will be an N-body non-Hermitian operator
for almost all H and W. Hence the one-body case is very
different from the two-body case.

As Piecuch er al. noted [5], the choice of —aH for W
gives an average energy that is monotonic decreasing as a
function of increasing o and has no minimum for any
finite «. In fact, no expression of the form f(H)® can
generally be exact if f(H) has an inverse because f and H
will commute and

Hf(H)® = Ef(H)®, -
F(H) 'Hf(H)® = H® = E®.

Hence ® must already be an eigenfunction of H. This
contradicts one example given by Nakatsuji [2] and sug-
gests that his result was not fully optimized.

In the following equations we will follow Nooijen [3]
and abbreviate the general two-body operators in the
equation for H or W as g,,. In Nakatsuji’s original paper
[1] on the structure of the exact wave function he noted
that a necessary and sufficient condition for a wave
function to be exact is that

(Vlg,(H ~ E)|¥)=0 ®)

for all g,. The necessity is obvious and the sufficiency
follows because one weighted sum of these equations
gives

(VIH(H - E)|¥) =0, ©)
while another sum gives

(V|1(H — E)|P) = 0. (10)
Combining these gives

(PI(H — EP|¥) =0, (11)

which can only be satisfied by an exact eigenfunction of
H. Nakatsuji [1] then examined the condition for W to
give a minimum average energy and arrived at another
equation that can be written in the form
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(YHq, +1/2[q,, W]+ 1/6[[q,, W], W]...} X
(H—E)|¥)=0. (12)

Since this differs from Eq. (8) he concluded that ¥ will
not in general be exact. Actually this is not conclusive
since (H — E)¥ would be 0 for an exact ¥, so ¥ would
satisfy both equations if it were exact. In fact in later
papers he used this exponential form to obtain numeri-
cally precise results [2].

As Nooijen noted [3], the number of Egs. (8) to be
satisfied is equal to the number of parameters in W. Hence
if the equations are solvable with finite matrix elements
w,, then an exact wave function of the form exp(W)®
would exist and would be computable. It is tempting to
believe that the set of all H of the form (1) define a set of
permissible ground-state wave functions smaller than the
full vector spanned by all N-body configurations that can
be formed from r orbitals. Strangely this is not true
because this form for H includes the unit operator for
which every vector is an eigenvector. Much information
about the original form of the Schrodinger operator is lost
in passing to second-quantized form with a finite basis
set. Hence the claim that exp(W)® can be exact for every
H of the form (1) and every trial ® is equivalent to
claiming that

¥ = exp(W)® (13)

has a solution for every @ and W. Now the same argu-
ment about dimensionality that led to the hypothesis that
W existed works against it. The vectors @ and ¥ can be
two arbitrary vectors and (13) represents a set of ~rV
equations in ~7* variables with N and » — N generally
much larger than 4. Hence there will generally not be a
solution. In fact, for a given H with a nondegenerate
ground state, W will be fixed. The vector ® will then

need to lie in the set defined by
® = exp(—W)¥ (14)

as the elements w,, are varied. If the elements of W are
constrained to lie in some bounded region |w Ml < R, this
set of @ will not include all vectors. The set of possible ®
do not form a linear vector space since exp(—W,;) +
exp(—W,) cannot usually be rewritten as exp(—W).
Except for a set of measure zero out of the set of all 'V,
the set of all ® related to W will not include single Slater
determinants or any other arbitrarily selected initial form
for the wave function. If it happens that a particular pair
@, ¥ are related by some W with finite matrix elements as
in Eq. (6), then W is specific to this pair unlike W in
Eq. (4) which is independent of ®. Thus in the example of
Eq. (6), if ® were replaced by exp(T)® as the trial
function (where T is a general two-body operator) gen-
erally no two-body operator X would exist so that
exp(X){exp(T)®} would be W. This would require that
exp(X) = exp(W) exp(—T), where all three operators are
of two-body form.
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Hence the conclusion is that a W with bounded real
matrix elements usually does not exist that would turn an
arbitrary @ into an exact eigenfunction of an arbitrary H
of the form (1). The assumption that such a W exists im-
plies the existence of exp(—W) as the inverse of exp(W).
This contrasts with Eq. (4) which has an unbounded W so
that exp(W) is a projection operator and has no inverse.
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