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We consider the triple differential distribution d�=dEJdm2
Jd�J for two-jet events at center of mass

energy M, smeared over the end-point region m2
J � M2, j2EJ �Mj ��, �QCD � � � M. The

leading nonperturbative correction, suppressed by �QCD=�, is given by the matrix element of a single
operator. A similar analysis is performed for three-jet events, and the generalization to any number of
jets is discussed. At order �QCD=�, nonperturbative effects in four or more jet events are completely
determined in terms of two matrix elements which can be measured in two- and three-jet events.
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for the kinematic region of interest. SCET describes the usoft gluons. The coupling of collinear and usoft degrees
This paper studies the semi-inclusive two-jet distribu-
tion d�=dEJdm2

Jd�J in high energy processes such as
Z ! q 	qq, where EJ and mJ are the energy and invariant
mass of one of the jets, J. No restriction is placed on the
kinematics of the second jet, J0. We are interested in
nonperturbative effects that are enhanced in the end-
point region j2EJ �Mj � M, m2

J � M2. In the end-
point region, the jet J is narrow, and has energy close to
M=2. At leading order in the parton model description,
the quark and antiquark each have energy M=2, and
m2
J � 0. Gluon radiation and nonperturbative effects

such as hadronization can cause EJ and m2
J to deviate

from their leading order parton model values. The aim of
this Letter is to characterize these nonperturbative effects
in QCD in terms of operator matrix elements and study
the relationship between nonperturbative effects in two
jets, and events with three or more jets. These nonpertur-
bative effects do not depend on the precise jet definition;
for example, a suitable choice is the Sterman-Weinberg
prescription [1].

In the end-point region, the decay distribution for two-
jet events can be written as

d�

dEJdm
2
Jd�J

� T�M;�J	J1�M;m2
J=M	



Z
dk�J2�M; k�	


 S�2EJ �M� k� �m2
J=�2EJ	: (1)

Here the hard function T and the jet functions Ji are
calculable perturbatively, and S is a nonperturbative
shape function. The precise form of the perturbative ex-
pansions of these functions depends on the jet definition
used. In the end-point region, this distribution must be
smeared over a suitable region of EJ and m2

J to be physi-
cally meaningful. This general form for the decay dis-
tribution has been obtained [2] previously using standard
‘‘diagrammatic’’ factorization methods [3]. We begin this
paper by reviewing the derivation of Eq. (1) using soft
collinear effective field theory (SCET).

The effective field theory SCET [4–6] is appropriate
0031-9007=03=91(12)=122001(4)$20.00 
interaction of collinear and ultrasoft (usoft) degrees of
freedom with momenta scaling as pc � �n � p; 	nn � p;
p?	 �M��2; 1; �	 and pus �M��2; �2; �2	. The lightlike
vectors n and 	nn satisfy n0 � 	nn0 � 1 and n � � 	nn, and the
perpendicular components of any four-vector V are de-
fined by V�

? � V� � �n � V	 	nn�=2� � 	nn � V	n�=2. For our
analysis, �� �=M � 1. The effective theory provides a
simple method for the factorization of hard, collinear,
and usoft degrees of freedom at the operator level. For
example, the factorization of usoft degrees of freedom
arises because they can be decoupled from the collinear
degrees of freedom using a simple field redefinition.
SCET gives field theoretical definitions of the various
ingredients in Eq. (1).

The first step in the SCET derivation of Eq. (1) is
matching the full theory current j� onto SCET. The
current in the effective theory at leading order in � is

j� � � 	�� 	nnW 	nn�
�C�P y; 	PP 	�Wy

n �n; (2)

where �� � gV�
�
? � gA�

�
?�5, gV;A are the vector and

axial couplings of the quarks to the Z boson, and
C�P y; 	PP 	 is the matching coefficient which is one at
tree level. The field �n denotes a collinear fermion in
the n direction, and we have used the convention

�n�x	 �
X
~pp

e�i~pp�x�n;~pp�x	; (3)

where ~pp is the label momentum which contains compo-
nents of order 1 and order �. The order �2 components are
associated with the spacetime dependence of the fields.

The label operators P , 	PP pick out the order one mo-
menta of the collinear fields and Wn�x	 denotes a Wilson
line of collinear gluons along the path in the 	nn direction.
The Wilson lines Wn; 	nn are required to ensure gauge in-
variance of the current in the effective theory [5]. The
Lagrangian of the effective theory does not contain any
direct coupling of collinear particles moving in the two
separate directions defined by n and 	nn [7]; however, they
can still interact with one another via the emission of
2003 The American Physical Society 122001-1
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of freedom in the Lagrangian can be eliminated via the
BPS field redefinition [6]:

�n ! Yy
n �n ; An ! Yy

n AnYn; (4)

where

Yn�z	 � exp

"
ig

Z
ds n � Aus�ns� z	

#
(5)

denotes a path-ordered Wilson line of usoft gluons in the
n direction from s � 0 to s � 1, since we are dealing
with final state collinear fields. (For annihilation, Yn is
from s � �1 to s � 0.) It is well known from the dia-
grammatic approach to factorization that the usoft de-
grees of freedom couple to collinear degrees of freedom
via a Wilson line [8].

To derive the factorized form in Eq. (1), we start from
the general expression

d�

d4r
�

1

2M

X
JX

�2$	4%4�M� pJ � pX	%4�r� pJ	


 j&�hJ; Xjj�j0ij2 ; (6)

where the sum includes the phase space integrations over
all the particles in the final state, j� denotes the current
producing the q 	qq pair, and &� is the polarization of the
decaying particle. The final state hadrons have been di-
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vided into those in the quark jet J, with total momentum r
and the remaining hadrons (including the antiquark jet)
which form X.

Using these definitions, the matrix element of the
current in Eq. (6) becomes

hJXjj�j0i �
X
~qq1 ~qq2

C�q�1 ; q
�
2 	hJjTf� 	�� 	nnW 	nn

a
~qq1(

gj0i���	()


 hXjTf�Y 	nnY
y
n a

b�Wy
n �n~qq2)bgj0i; (7)

where (;) �a; b	 denote spin (color) indices, and the
subscript ��~qq denotes the total label momentum of the
operator inside. In Eq. (7), and in the subsequent equa-
tions, we will use the notation n � p � p�, 	nn � p � p� for
any four-momentum p.

The operators inside the matrix elements in Eq. (7) are
time ordered. The operator TfYng is a Wilson line where
the operator time ordering agrees with the path ordering
of matrix multiplication, TfYng � Yn. The operator TfYy

n g
has operator time ordering in the opposite order as the
path ordering of matrix multiplication. The two orderings
can be made to coincide by taking the transpose of all the
matrix indices, so that TfYyb

na g is the Wilson line in the 	33
representation, i.e., TfYyb

na g � 	YYbna. Similar results hold for
the anti-time-ordered products.

Using Eq. (7), the differential distribution becomes
d�

d4r
�

1

2M

Z
d4s�2$	4 %4�M� r� s	 
 &�&

+����	()� 	��+	,-jC�r
�; s�	j2




"X
X

%4�s� pX	jhXjTf�Y 	nnY
y
n �W

y
n �n~ssj0igj2

#
),a

c




"X
J

%4�r� pJ	jhJjTf� 	�� 	nnW 	nn~rrj0igj
2

#
-(c

a

: (8)

The two terms in square bracket can be simplified, following Ref. [6]. For the second term, we have

X
J

Z
d4z ei�r�pJ	z�jhJjTf� 	�� 	nnW 	nn~rrj0igj

2-(c
a �

�
6n	

2

�
-(
%acJ1~rr�r

�	; (9)

where the last equality defines J1~rr�r�	.
Combining the first term with the %ac in Eq. (9) givesX

X

Z
d4z ei�s�pX	z�jhXjTf�Y 	nnY

y
n �W

y
n �n~ssgj0ij2),a

a � 3
Z
dk�J2 ~ss�k�	S��s� � k�	

�
6n
2

�
),
: (10)
The functions Ji depend on the jet definition. The shape
function S�k�	 is defined by [2]

S�k	 �
1

3

Z du
2$

eikuh0jTr 	TTf�YnY
y
	nn �nu	gTf�Y 	nnY

y
n �0	gj0i

�
1

3
h0j 	YYyc

n aY
y b
	nnc %�k� in � @	Y 	nnb

e 	YYan ej0i: (11)

The Wilson loop, shown in Fig. 1, is regulated to preserve
reparametrization invariance [9], and is a function of 	nn �
nu. S�k	 is normalized so that

R
1
�1 dkS�k	 � 1.

The jet function in Eq. (9) depends on ~rr, which has
both � and ? components. One can align 	nn with the jet
axis, i.e., choose r? � 0. With this choice, we write
Ji�r�; r�	 � Jir�;0?�r
�	: (12)

Combining Eqs. (8)–(12) and using d4r �
�M=4	dEJdm

2
Jd�J gives Eq. (1) with the hard function

defined by

T�M;�J	 �
3

512$4 jC�M;M	j2&�&+� Tr��� 6n 	��+ 	6n6n: (13)

We can simplify the discussion by restricting ourselves
to the leading order in perturbation theory, where

C�M;M	 � 1; Ji�M; k�	 � 2$%�k�	: (14)

Perturbative corrections to this result can be included by
122001-2



FIG. 1. Pictorial representation of the Wilson lines occurring
in the shape function S�k	 defined in Eq. (11).
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calculating the two-jet functions Ji and the Wilson coef-
ficient T to higher orders in perturbation theory. For
Sterman-Weinberg jets [1], the perturbative corrections
to the Ji contain logarithms of the cone angle % and the
minimum energy cut Ec. We take Ec=M and % to be O��	.
Therefore S, which involves only usoft degrees of free-
dom, does not depend on % and Ec.

Integrating Eq. (1) over m2
J using Eq. (14) gives

d�
dEJd�J

� 2
d��0	

d�J
S�2EJ �M	 � � � � ; (15)

where d��0	=d�J is the parton model differential decay
rate and the ellipsis denotes subdominant perturbative
and power corrections. To this order, the shape of the jet
energy spectrum is determined entirely by the nonper-
turbative shape function. Nonperturbative usoft radiation
will reduce the energy associated with the jets. Thus,
S�k	 � 0 for k > 0.

To proceed further, we consider observables in which
we smear the jet energy distribution over a region j2EJ �
Mj � � � M, with � � �QCD [10]. In this region there
are enhanced nonperturbative corrections suppressed
only by powers of �QCD=�. Note that for the total rate
the nonperturbative corrections are much smaller since
they are suppressed by powers of �QCD=M. To be more
precise, consider a smooth window function w��EJ	
which when integrated over EJ is normalized to unity
and has support concentrated in the region jEJ �M=2j<
�. Then, �

d�
d�J

�
�
�

Z
dEJ w��EJ	

d�
dEJd�J

; (16)

is such an observable. For it, we can expand the shape
function in a power series, given by

S�k	 � %�k	 � %0�k	 h0jO1j0i �
1
2%

00�k	 h0jO2j0i � � � � ;

(17)

where

Om � 1
3Tr�Y

y
	nn �in �D	mY 	nn: (18)

We can rewrite O1 as

O1 � Oq
1 �

1

3
Tr

Z 1

0
dsGn 	nn� 	nns	; (19)
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where

G n1n2� 	nns	 � Y 	nn� 	nns; 0	
yn�1 n

+
2G�+Y 	nn� 	nns; 0	: (20)

Here, G�+ is the gluon field strength (with a factor of the
strong coupling absorbed into it) and Y 	nn� 	nns; 0	 denotes a
usoft Wilson line along the 	nn direction from 0 to 	nns. Note
that the Fourier transform of S�k	 is a function only of the
combination � 	nn � n	u, so the matrix element of Om must
have the form

h0jOmj0i � � 	nn � n	mAq
m; (21)

where Aq
m is a number of order �m

QCD. If the observed jet
is the antiquark jet, then in � @ in Eq. (11) is replaced by
i 	nn � @, and the leading correction is given by the vacuum
matrix element of the antiquark operator

O 	qq
m � 1

3Tr �
	YYy
n �i 	nn �D	m 	YYn; (22)

which is � 	nn � n	A 	qq
m. By charge conjugation, A 	qq

m � Aq
m.

The nonperturbative corrections to the differential
decay rate in Eq. (15) are singular at EJ � M=2. This is
also the case for the perturbative corrections. However,
for the smeared observable in Eq. (16), the expansion of
the shape function gives

�
d�
d�J

�
�
�

�
d��0	

d�J

�
�w��M=2	 � w0

��M=2	Aq
1 � � � �:

(23)

Since the matrix elements of the operators scale as Aq
m �

�m
QCD and the mth derivative of the window function

(evaluated at EJ � M=2) scales as 1=�m�1, the square
brackets on the right-hand side of Eq. (23) contain an
expansion in powers of �QCD=�.

A similar calculation also applies for events with more
than two jets in the final state. For example, three-jet
events contain an energetic gluon radiated off one of the
quarks at a large angle. The subscripts 1, 2, and 3 refer to
the quark, gluon, and antiquark jets, respectively. One of
the jets is unobserved, and is summed over. Consider the
case where the antiquark jet ( jet 3) is unobserved, and the
quark and gluon jet are observed. The lightlike vectors
n1;2 are defined by n1 � �1;n1	, n2 � �1;n2	, where n1;2
are unit vectors in the direction of the two observed jets.
One can then construct the third vector,

n03 � 1 ; n3 � �
E1n1 � E2n2

jE1n1 � E2n2j
; (24)

using only information from the two observed jets. A
similar argument holds if the quark jet, or the gluon jet,
is the unobserved jet.

Let i and j denote the two observed jets, and r denote
the unobserved jet, where �i; j; r	 is some permutation of
�1; 2; 3	. We find at tree level that
122001-3
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d�ij
dEid�idEjd�j

�
d��0	

ij

dEid�id�j
nr � nj


 Sij�nr � niEi � nr � njEj �M	;

(25)

for the differential decay distribution for the observed
jets i and j in terms of a nonperturbative shape function
Sij.

In the three-jet case, the current in SCET contains the
gluon field An2 . Factoring the usoft degrees of freedom
results in the shape function

Sij�k	 �
1

4

Z du
2$

eiku Trh0j 	TTf�Yn3Y
y
n2T

AYn2Y
y
n1�unr	g


 Tf�Yn1Y
y
n2T

AYn2Y
y
n3�0	gj0i: (26)

Thus, a different shape function determines the usoft
physics in three-jet events, and in general a new non-
perturbative function is required for each additional jet.
This is not surprising since the color structure is very
different for events with different numbers of jets. The
time-ordered product TfYy b

na Ync
dg is equal to

�1=3	%da%
b
c � 2YnAB�T

A	bc�T
B	da, where Yn is the adjoint

Wilson line from 0 to 1 in the n direction.
In the kinematic region jM� Einr � ni � Ejnr � njj �

�, an expansion of Sij�k	 analogous to the one in Eq. (17)
can be performed, and the first correction to the smeared
rate is determined by the operator

O�3	
1 � 1

3TrY
y
n1�inr �D	Yn1 �

1
3Tr

	YYy
n3�inr �D	 	YYn3

� 1
8TrY

y
n2�inr �D	Yn2 : (27)

The matrix element of this operator is given by

h0jO�3	
1 j0i � nr � �n1 � n3	A

q
1 � nr � n2 A

g
1 : (28)

where Aq
1 is the same number that occurs in two-jet

events and is defined by Eq. (21), and Ag1 is a new number
of order �QCD.

In three-jet events with an unobserved gluon jet, nr �
n2 and the vacuum matrix element of O�3	

1 is n2 � �n1 �
n3	A

q
1 , and is completely determined by the two-jet case.

If the unobserved jet is the quark jet, then nr � n1, and
the vacuum matrix element of O�3	

1 is �n1 � n2	A
g
1 � �n1 �

n3	A
q
1 and, if the unobserved jet is the antiquark jet, the

vacuum matrix element of O�3	
1 is �n3 � n2	A

g
1 � �n1 �

n3	A
q
1 . If one cannot distinguish quark and gluon jets,

then the three-jet distributions are given by averaging
over the unobserved jet being the quark, gluon, or anti-
quark jet.

One can repeat the above analysis for events with four
or more jets. In the end-point regions, the generalized
shape functions can be expanded as in Eq. (17), and the
leading nonperturbative corrections are expressed in
terms of Aq

1 and Ag
1 which characterize two- and

three-jet events. An important feature is that, even though
the shape functions for events with different numbers of
122001-4
jets are very different, at order �=�QCD no new non-
perturbative quantities enter for four or more jets after
smearing by an amount M � � � �QCD over the end-
point region. The reason is that the only Wilson lines that
can arise from hard quark antiquark and gluon radiation
are in the 3, 	33, and 8 representations, and these already
occur in the two- and three-jet cases. One can also predict
the distributions for two jets plus a hard photon in terms
of Aq

1 measured in two-jet events, since the adjoint
Wilson line from gluon emission does not enter.
Aq

1 and Ag
1 can be determined by fitting to the ex-

perimental data on two- and three-jet events. They can
also be computed numerically by light-cone lattice gauge
theory methods [11], since they involve only Wilson lines
along lightlike directions.

In this Letter, we have focused on the nonperturbative
effects. For comparison with experiment, it is important
to include the perturbative corrections. At order (s, they
can be obtained similar to the computation in Ref. [1].
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