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Validity of the Second Law in Nonextensive Quantum Thermodynamics
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The second law of thermodynamics in nonextensive statistical mechanics is discussed in the
quantum regime. Making use of the convexity property of the generalized relative entropy associated
with the Tsallis entropy indexed by q, Clausius’ inequality is shown to hold in the range q 2 �0; 2�. This
restriction on the range of the entropic index, q, is purely quantum mechanical and there exists no upper
bound of q for validity of the second law in classical theory.
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ized entropies. Recently, it has been shown [11–13] that
the modified additivity property, termed pseudoadditiv- Zq � Treq�� 
��H � ~UUq��: (3)
Development of nanotechnology raises a new question
of physical importance regarding validity of the ordinary
thermodynamic principles, both equilibrium and non-
equilibrium, that fundamentally apply to macroscopic
objects in the thermodynamics limit. In fact, some sur-
prising properties have been reported on microscopic
thermodynamic systems (see an interpretive article [1]
and the references therein). To understand thermodynam-
ics of small systems, there are currently two approaches:
one modifies the thermodynamic relations by taking into
account the surface effects, and the other generalizes
Boltzmann-Gibbs statistical mechanics by relaxing the
additivity properties of the thermodynamic quantities to
include nonextensive features of such systems. The former
has been initiated by Hill [2] and further elaborated on by
himself with Chamberlin [3–5]. The latter is represented
by nonextensive statistical mechanics [6–8]. This theory
is formulated by making use of Tsallis’ nonadditive en-
tropy [9] indexed by q, the deviation of which from unity
may measure the smallness of the object under consid-
eration [10]. The present work aims to contribute to the
latter approach.

It is not too much to emphasize that the basic thermo-
dynamic principles have been formulated without re-
course to the microscopic physical laws although
thermodynamics itself is essentially concerned with the
molecular theoretic viewpoint of objective materials. It is
our standpoint that statistical mechanics may be modified
but thermodynamics should remain unchanged, which in
turn implies that, when a generalization of traditional
statistical mechanics is considered, it is of crucial im-
portance to establish its consistency with the thermody-
namic principles. This is the driving motivation of the
present investigation.

The first law of thermodynamics describes conserva-
tion of energy and therefore it should be manifestly sat-
isfied by any generalization of statistical mechanics.
Also, it is not difficult to make the third law character-
izing the completely ordered state hold for any general-
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ity, of the Tsallis entropy is a general one which is con-
sistent with the zeroth law. On the other hand, it is fair to
say that the second law had never been rigorously exam-
ined in the context of nonextensive statistical mechanics.

In this paper, we study the validity of the second law
of thermodynamics in nonextensive quantum thermo-
dynamics of finite-dimensional systems. In particular,
we present a proof of Clausius’ inequality by employ-
ing the generalized quantum relative entropy referred to
as the quantum q-relative entropy [14,15] associated with
the Tsallis entropy. It turns out that the present discussion
also gives an insight into the definition of temperature in
nonextensive statistical mechanics. This is in parallel
with a recent work [16], where the ordinary relative
entropy has been used to elucidate the second law in the
quantum regime.

Nonextensive quantum statistical mechanics is formu-
lated based on the Tsallis entropy

Sq��� �
1

1� q
�Tr�q � 1�; (1)

where q is the positive entropic index and � is the density
matrix. Here and hereafter, Boltzmann’s constant is set
equal to unity for the sake of convenience. This quantity
is nonadditive, since for the factorized joint density ma-
trix, �I;II � �I � �II, of a bipartite system ��I;�II�, S

I;II
q

exhibits pseudoadditivity mentioned earlier, SI;IIq � SIq 	
SIIq 	 �1� q�SIqS

II
q (with the notation SIq 
 Sq��I� and so

on). The last term on the right-hand side violates addi-
tivity as long as q � 1. In the limit q ! 1, Sq��� con-
verges to the familiar additive entropy of von Neumann,
S��� � �Tr�� ln��: limq!1Sq��� � S���. Under the con-
straints on the normalization condition, Tr� � 1, and the
generalized internal energy, Uq � hHiq � Tr��qH�=Tr�q

with the system Hamiltonian H, the Tsallis entropy is
found to be optimized by the following state:

~�� �
1

Zq
eq�� 
��H� ~UUq��; (2)
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Here, eq�x� denotes the q-exponential function defined by
eq�x� � �1	 �1� q�x�1�1�q�

	 with the notation �a�	 

maxf0; ag, ~UUq � Tr�~��qH�=Tr~��q, and 
� � 
=Tr~��q with
the Lagrange multiplier 
 associated with the constraint
on the generalized internal energy. It can be ascertained
by a direct calculation that the relation, @Sq�~���=@ ~UUq � 
,
holds and accordingly the thermodynamic Legendre
transform structure is kept unchanged.

Before proceeding to the second law, it seems appro-
priate to formulate the first law of thermodynamics
[17,18] to identify the quantity of heat. For this purpose,
consider the generalized internal energy, Uq �
Tr��qH�=Tr�q. We are concerned with small change of
this quantity from ~UUq and therefore � and ~�� in Eq. (2) are
close to each other. Taking the variation of Uq, we obtain
the first law

�0Qq � �Uq 	 �0Wq; (4)

where �0Qq and �0Wq are the small changes of the quan-
tity of heat and the work given by

�0Qq �
Tr���q�H �Uq��

Tr�q ; (5)

�0Wq � �h�Hiq � �
Tr��q�H�

Tr�q ; (6)

respectively.
Now let us address the second law in nonextensive

quantum thermodynamics. Our idea is to take advantage
of the quantum q-relative entropy of � with respect to the
reference state, �, associated with the Tsallis entropy,
which is given as follows:

Kq�� k �� �
1

1� q
�1� Tr��q�1�q��: (7)

In the limit q ! 1, this quantity tends to the ordinary
quantum relative entropy, K�� k �� � Tr���ln�� ln���
provided the support of � has to be equal or larger than
that of � [19]. (This quantity was employed in Ref. [16] to
discuss the second law of quantum thermodynamics.) It is
known [15] that Kq�� k �� � 0 and Kq�� k �� � 0 if and
only if � � �. Therefore, the quantum q-relative entropy
can be utilized for comparing two states.

We wish to compare � with ~�� in Eq. (2) with the
assumption that they are close to each other. It is imme-
diate to find Kq�� k ~��� to be given by

Kq�� k ~��� �
1

Tr~��q fSq�~��� � Sq��� 	 
�Tr��q�H � ~UUq��g;

(8)

where the identical relation, �Zq�
1�q � Tr~��q, has been

used. Taking the variation of Kq�� k ~��� with respect to
�, i.e., � ! �	 �� and Tr�� � 0, with fixed ~��, we
obtain
120601-2
�Tr~��q��Kq�� k ~��� � ��Sq��� 	 
�Tr���q�H �Uq��;

(9)

where ��q ~UUq has been replaced by ��qUq, since � is
close to ~�� and therefore the difference between these two
quantities is of the higher-order infinitesimal. Using
Eq. (5), we further have

�Tr~��q��Kq�� k ~��� � 
�0Qq � �Sq���; (10)

which can also be written as

�Kq�� k ~��� � 
��0Qq � �S�R�q ���; (11)

where S�R�q ��� � �1� q��1 lnf1	 �1� q�Sq���g �
�1� q��1 ln�Tr�q� is the Rényi entropy. It is of interest
to observe in the above equations that inverse temperature
associated with the Tsallis entropy is 
, whereas 
� is for
the Rényi entropy [20,21]. In this respect, however, it
should be noticed that the Tsallis entropy is stable [22],
whereas the Rényi entropy is not [23] and therefore can-
not be used for generalizing statistical mechanics.

In order to establish Clausius’ inequality


�0Qq � �Sq���; (12)

it is necessary to show that �Kq�� k ~��� is negative. This
task is, however, not simple because �� does not com-
mute with �, in general. As shown below, this task can be
achieved only for q 2 �0; 2�. We again emphasize that the
second law as expressed in Eq. (12) had never been
established for nonextensive quantum thermodynamics.

To calculate �Kq�� k ~���, we represent the variation
by a trace-preserving completely positive unital map,
� ! �	 �� 
 ����:

���� �
X
k

Vk�V
y
k : (13)

Vk’s are certain operators satisfying the trace-preserving
condition,

P
kV

y
k Vk � I, with the identity operator I. The

unital condition, ��I� � I, leads to
P

kVkV
y
k � I. These

two conditions are compatible if Vk ’s are normal; that is,
�Vk; V

y
k � � 0 for 8 k. Since ~�� is fixed, ��~��� � ~��, which is

fulfilled if �Vk; ~��� � 0. Thus, the variation is understood
as follows: �Kq�� k ~��� � Kq����� k ~��� � Kq�� k ~���,
which can be thought of as (minus of) entropy production.

Now, let A be a positive operator. Then, the function
f�A� � Aq (q > 0) is operator monotone, that is, for
another positive operator, B, such that B � A, holds
Bq � Aq. A very important point is that if q > 2, then
this operator function does not possess definite convexity.
The function f�A� is operator concave (convex), i.e.,
f��A	 �1� ��B� � ����f�A� 	 �1� ��f�B� if q 2
�0; 1� (q 2 �1; 2�), where � 2 �0; 1� [24]. In other words,

F�A� �
�

Aq for q 2 �0; 1�;
�Aq for q 2 �1; 2�;

(14)

is operator concave. Then, Ando’s theorem states (see
120601-2
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Ref. [24]) that

F
�X

k

VkAV
y
k

�
�

X
k

VkF�A�V
y
k : (15)

Using this theorem, we have

~�� �1�q�=2������q ~���1�q�=2 � ��~���1�q�=2�q ~���1�q�=2�

�q 2 �0; 1��;
(16)

~�� �1�q�=2������q ~���1�q�=2 � ��~���1�q�=2�q ~���1�q�=2�

�q 2 �1; 2��:
(17)

Therefore, using the definition in Eq. (7), we finally
obtain

Kq����� k ~��� � Kq�� k ~��� �q 2 �0; 2��; (18)

which establishes Clausius’ inequality in Eq. (12).
Equation (18) also has significance as a generalization

of the monotonicity theorem for the ordinary quantum
relative entropy [25].

In summary, we have established in the present work
the following three new points in nonextensive quantum
thermodynamics: (i) the definition of the quantity of
heat, (ii) the rigorous derivation of Clausius’ inequality,
and (iii) the constraint on the range of the values of q,
q 2 �0; 2�, for validity of the second law. In particular,
(iii) has no classical counterpart and is thus highly non-
trivial. Combining this result with the previous works in
the literature, we may now conclude that nonextensive
statistical mechanics is fully consistent with the prin-
ciples of thermodynamics in the quantum regime. It is
of great interest to see what happens in quantum systems
with q > 2, where the second law can be violated, in
general. In the classical regime, which corresponds to
the situation that all relevant density matrices and ob-
servables are simultaneously diagonalized in a common
basis, there is no restriction on the range of the entropic
index, q. It should be emphasized that nonextensive sta-
tistical mechanics is an approach to nonequilibrium sta-
tionary states of small or complex systems. Therefore, the
result deduced above is a statement of entropy production
in such circumstances. It is in this context that the sig-
nificance of the result obtained here is to be understood.
Also, it may not be out of place to mention that, besides
small systems, nonextensive statistical mechanics is fun-
damentally relevant to systems possessing the scale-free
nature and self-similarity. Its successful applications to
the physics of high-energy processes [26,27] may be
interpreted in this respect. A point to be noticed here is
that to treat such processes the relativistic approach is
essential. The discussion in the present work does not
assume any specific forms of the system Hamiltonian,
and therefore it can admit the relativistic formulation.
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