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Feshbach Resonance in Dense Ultracold Fermi Gases
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We propose a coherent framework allowing one to treat many-body effects in dense ultracold Fermi
gases in the presence of a Feshbach resonance. We show that the simple effect of Pauli exclusion induces
a strong modification of the basic scattering properties. In particular, this washes out the Feshbach
resonance and provides a natural explanation for recent experimental findings.
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ing physically to the formation of a molecule, if this well
is essentially isolated from the large distance region by a

with H21 � H12. Since the purpose of t�r; r � is just to
make the particle cross the boundary between domains 1
Besides the continuing progress in understanding
Bose-Einstein condensation in ultracold bosonic atomic
gases, the exploration of similar dense [1] fermionic
systems has received recently a strong impetus from
experiments reaching the strongly degenerate regime
with mixtures of fermions in two different hyperfine
states [2]. A main purpose in exploring these systems is
the search for a transition to a BCS superfluid [3]. A
particularly fascinating possibility of experimentally
controlling the strength of the interaction has been used
in these last experiments. It consists of working in the
vicinity of a Feshbach resonance [4] where the scattering
length depends strongly on the applied magnetic field. It
has been emphasized recently [5] that the strong inter-
action obtained in the vicinity of this resonance, together
with the Bose condensation of the molecules correspond-
ing to the underlying bound state, could be of major
interest for the BCS transition.

In the present paper we set up a theoretical framework
for handling many-body effects [6] in the presence of a
Feshbach resonance. As a first consequence we show why
there is no resonant feature appearing in 6Li at 860 G for
degenerate gases, where it has been predicted to appear
for collisions between two atoms in vacuum [7]. There is
no need to modify this prediction. The simple effect of
Pauli exclusion explains that the Feshbach resonance is
washed out, as it appears experimentally [2]. Here we will
restrict ourselves to the case where the (quasi) bound
state responsible for the resonance is not thermally occu-
pied, which corresponds to a negative scattering length.
Similarly we will consider only the normal state although
our formalism can be extended to the superfluid state.

Let us consider modeling the Feshbach resonance [4]
which is actually produced by the somewhat complex
interplay between the spin (electronic and nuclear) and
orbital degrees of freedom. In order to have an under-
standing of the physics, it is convenient to get rid of the
spin degrees of freedom and think that the resonance
occurs because there is a (quasi) bound state caused by a
deep well in the atomic interaction potential at short
distances. Indeed one will have a bound state, correspond-
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high barrier with very small transmission probability.
Clearly this model behaves phenomenologically exactly
in the same way as a Feshbach resonance [8]. On the other
hand we are interested only in the effect of this molecular
state on the scattering of two atoms, and we ignore the
effect of the other atoms on these two when they are close
together, because the gas is dilute on the scale of the
molecular state. So we ignore, for example, the possibility
that three atoms are close together, which would require
additional ingredients in the description.

We further simplify our description by separating the
possible interparticle distance in two domains. Either
particles are far away and interact by the long range
part of the potential (denoted by index 1) or they are
quite close and interact through the deep well potential
(index 2). More precisely one can define the boundary
between the two domains as being at some distance R,
large compared to the molecular size but small with
respect to interparticle distance. Then instead of describ-
ing exactly the transition from domain 1 to domain 2, we
assume that a term in the Hamiltonian gives rise to a
matrix element producing this transition. This problem is
quite similar to the one of electrons tunneling between
two metallic electrodes through an insulating barrier and
our approach is at the level of the tunneling Hamiltonian
[9]. It is actually known that this simple modeling can be
improved up to the exact problem, and that many-body
effects can also be included in this theory [10], but this
does not seem necessary in the present case and our
simple modeling should be quite enough.

Now consider first the atoms with their center of
mass at rest, so we deal with a one body problem
with interparticle distance r and reduced mass mr �
m=2. The parts of the Hamiltonian H correspond-
ing, respectively, to domains 1 and 2 are H11 �
p2=2mr � V1�r� and H22 � p2=2mr � V2�r�, where V1

and V2 are the interaction potential at long and short
distances, respectively. For example, V1 gives rise to a
scattering length abg while V2 produces the mo-
lecular state. Then we describe hopping between the two
domains by the nonlocal term H12�r; r0� � t�r; r0�
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and 2, we can assume it to be short ranged around this
boundary.

Now let G0
11�r; r

0; !� be the propagator corresponding
to H11, at frequency ! ( �h � 1), and similarly G0

22�r; r
0; !�

the H22 propagator. Physically they describe the motion
either at long or short distances, without the possibility to
hop between the two domains. We now treat exactly the
effect of the hopping term. Let G�r; r0; !� be the full
propagator corresponding to H. If r and r0 are large (we
call G11 the corresponding propagator), the particle
can propagate either by staying in domain 1 (this is de-
scribed by G0

11) or, after a stay in domain 1 (giving again
G0

11), by making a first hop (produced by t) to domain 2
and then propagating back by any means to domain 1
(described by G21). This leads to the following equation
between operators:

G11 � G0
11 �G0

11tG21; (1)

where the same frequency is understood in all propaga-
tors. Similarly, since G0

21 � 0, we have G21 � G0
22t

yG11

for propagation between domains 2 and 1. Carrying this
into Eq. (1) gives

G11 � G0
11 �G0

11tG
0
22t

yG11 (2)

which is an integral equation for G11.
This can now be simplified by keeping only the bound

state of H22 corresponding to the Feshbach resonance. All
the other bound states are supposed to be very far away
energetically. This allows one to make, in the relevant
energy range, a single pole approximation for G0

22:

G0
22�r; r

0; !� �
’�r�’��r0�
!� E0 � i�

(3)

with � ! 0� and where ’�r� is the wave function of the
bound state and E0 its energy. This makes Eq. (2) explic-
itly soluble because G0

22 becomes basically a projector on
the bound state. One finds the explicit solution:

G11 � G0
11 �

1

!� E0 � �E0
G0

11tj’ih’jt
yG0

11; (4)

where �E0 � h’jtyG0
11tj’i is a complex quantity.

Let us assume for simplicity that there is no back-
ground scattering, i.e., V1 � 0, so G0

11 is just the free
particle propagator. The corresponding T matrix is then
given by the last term in Eq. (4) without the G0

11 opera-
tors. For the scattering we are interested in, we look for
matrix elements between plane waves with very small
wave vectors compared to the molecular scale [4,6].
Since ’�r� and t�r; r0� are short ranged we can take these
wave vectors to be zero. This leads to a numerator equal to
jwj2 with w �

R
drdr0t�r; r0�’�r0�. The denominator

gives a pole for ! � E with E � E0 � �E0, correspond-
ing to the resonance produced by the bound state. The real
part ReE gives the physical energy !0 of the resonance,
which is the one measured experimentally. So we do not
have to worry about calculating Re�E0. The imaginary
part gives the width of the resonance due physically to the
120401-2
possible decay, induced by t, of the molecule into two
atoms. Introducing the Fourier transform G0

k of the free
particle propagator, this imaginary part will come from
ImG0

k � ����!� �k� with �k � k2=2mr, physically
linked to the density of final states for the decay. Since
we are concerned with low energy !, the wave vector
must be small and the matrix elements coming from tj’i
in the above expression of �E0 can again be evaluated for
zero wave vector, which introduces again jwj2. Finally we
obtain for the corresponding scattering amplitude

f��� � �
1

�!�!0�=�� i�
(5)

to be evaluated on the shell ! � �2=2mr. We have set � �
mrjwj2=2�. Equation (5) gives in particular Imf�1��� �
�� as required by unitarity. Evaluating Eq. (5) at zero
energy gives the scattering length a � ��=!0. Strictly
speaking the Feshbach resonance corresponds to the situ-
ation where the above resonance occurs at zero energy
! � 0, implying an infinite scattering length, i.e., !0 �
0. Experimentally !0 is controlled by the applied mag-
netic field. Naturally this result for the scattering ampli-
tude is well known [8], as well as this general way of
modeling the Feshbach resonance [4] as a simple switch
between molecular and diffusion states. We have just
reformulated this approach in a way convenient for gen-
eralization in order to include many-body effects.

We turn now to the case of a dense Fermi gas and
assume again no background scattering. As already men-
tioned we neglect the effect of the other atoms when two
atoms are scattering due to the Feshbach resonance since
the gas is dilute on the molecular scale. In other words we
take for the effective interaction the same as the one we
had for only two atoms present, namely, �00 � jwj2=
�!� E0�, as results from Eq. (2). This is equivalent to
retain only ladder diagrams for the short range potential.
Actually we believe that this description should still be
correct even if we take into account the perturbation due
to the other atoms, provided it is not too strong. Indeed
this should change only the effective parameters energy
position, width, and coupling strength of the resonance
which are already present in our description. Naturally !
in our expression for �00 is the energy for the center of
mass of the two atoms at rest. If their total momentum is
K and their total energy ! we have to discount the energy
associated with the center of mass motion and write
�00�� � jwj2=�� E0�, with  � !� 2�� K2=4m.
Here, as in the following, we take the origin of the single
particle energy at the chemical potential �, which pro-
duces a shift 2� for the energy of two atoms.

We will now explore the simplest consequences of this
interaction by ignoring fluctuationlike effects and analo-
gous terms, and taking merely �00 as an irreducible
vertex. With this assumption we can write the Bethe-
Salpeter equation [6] for the full vertex ��!;K�, which
is directly related to the scattering amplitude, as
120401-2
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��!;K� � �00�� � �00����!;K���!;K�; (6)

where ��!;K� describes the propagation of two atoms
and is given, in terms of the full thermal propagator of an
atom G�!;k�, by

��!;K� ��T
X
n

Z dk
�2��3

G��i!�!n;K�k�G�!n;k�

(7)

with [6] !n � �2n� 1��T. We have written Eq. (6) in a
simple way by already taking into account that the full
vertex � depends only, in our case, on the total energy !
and the total momentum K of the scattering atoms,
because �00�� has itself this property. Equation (6) gives

��1
00 �� � ��1�!;K� ���!;K�: (8)

We now eliminate the pole location E0 in �00, in favor of
the physical energy !0 of the resonance. This is done by
writing Eq. (8), at T � 0, for the case of two atoms in
vacuum (implying � � 0), at zero energy ! � 0 and
momentum K � 0. In this case G�!n;k� becomes the
free propagator �i!n � �k��1 and the frequency summa-
tion in � gets easy. On the other hand for two atoms in
vacuum ��!;K� becomes jwj2=�� E�, which is essen-
tially the T matrix. Hence in this case Eq. (8) reduces to

�E0=jwj
2 � �!0=jwj

2 �
Z dk

�2��3
1

2�k
: (9)

Actually this equation is just equivalent to !0 � E0 �
Re�E0. Subtracting Eq. (9) from Eq. (8) we obtain

��1�!;K� � ��1
0 �� ���!;K� �

Z dk
�2��3

1

2�k
; (10)

where �0��  jwj2=��!0�. Taken together the last
two terms on the right-hand side (r.h.s.) of Eq. (10) give a
convergent integral for large values of k, while each term
separately diverges. However this divergence would not
be present if we had kept the k dependence of hkjtj’i
instead of making k � 0 at the outset. Equation (10)
makes clear a general feature, namely, the scattering
amplitude depends not only on the total energy ! of the
two particles, but also on their total momentum, due to
the term ��!;K� which gives the effect of the other
fermions on the scattering process: Galilean invariance
for this process is obviously lost because of the presence
of the Fermi sea. It is clear physically that the existence of
the Fermi sea will be unimportant when K is very large,
while we expect it to be most important for K � 0. We
consider only this situation in the following.

Remarkably the modifications produced by the other
fermions are already very important when interactions
are omitted in ��!;K�. This corresponds to the modifi-
cation of the scattering due to the Pauli exclusion. We
restrict ourselves to this problem in the following. In this
case we have G�!n;k� � �i!n � �k ����1 and the cal-
culation of � can be reduced to a single integration over
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the momentum. It is convenient to use reduced units to
display the result. We take � as the energy scale and k0,
defined by � � k20=2m, as the wave vector scale (this is
the Fermi wave vector at T � 0). Introducing the reduced
wave vector x � k=k0, reduced energy �!! � !=�, and
reduced temperature �tt � T=�, Eq. (10) becomes

�
2�2

mk0

1

��!; 0�
�

1

!
�

�!!� 2
�WW

� I� �!!�;

I� �!!� �
Z 1

0
dx

�
1�

x2

x2 � 1� �!!=2
tanh

x2 � 1

2�tt

�
;

(11)

where �!! means �!!� i�. Except for the factor �=2k0
this is just the inverse f�1 of the effective scattering
amplitude for our problem. The coupling constant ! �
2k0jaj=� is also related to the detuning !0 by ! �
�2=��W=!0 with W � �k0 being the energetic (half)
width of the resonance line for a wave vector k0. We
have used the reduced width �WW � �2=��W=�. In the
specific case of 6Li, the most heavily explored experi-
mentally, the standard energy width of the Feshbach reso-
nance is given [4] by �=jabgj where abg is the high field
limit of the scattering length, of the order of 100 nm. It is
experimentally of the order of 100 G, corresponding to an
energy of 10 mK. For dense gases we have k0jabgj � 1,
which gives W � 10 mK. Since we have at most experi-
mentally �� 10 �K, we see that �WW � 103. Since we are
interested in reduced energy �!! of the order of 1, this
makes the second term on the r.h.s. completely negligible
and we omit it from now on. However this term is
necessary if we want to find in the lower complex plane
the pole corresponding to the Feshbach resonance.

The imaginary part of the r.h.s. is simply ImI� �!!� �
���=2�R tanh� �!!=4�tt� with R � �1� �!!=2�1=2 and is plot-
ted in Fig. 1. At T � 0 with no Fermi sea, this would give
us back the imaginary part in Eq. (5). We see that, in
addition to �!! � �2 corresponding to zero kinetic energy,
this imaginary part is zero for �!! � 0, that is at the
chemical potential. This is expected on general grounds
since injecting particles at this energy does not perturb
equilibrium and so does not lead to decay. More generally
the tanh� �!!=4�tt� can be understood as the decrease of the
scattering resulting from the Pauli exclusion on the final
state, together with the existence of reverse processes,
both due to thermal occupation.
ReI� �!!� is plotted in Fig. 1 for various reduced tem-

peratures. After adding the term 1=! and multiplying by
the factor ��=2k0, we can consider the result as the in-
verse of an effective scattering length a�1

eff for two atoms.
When ! is of the order of unity or larger, we see as
naturally expected that the scale for this scattering length
is the only one left in the problem, namely, 1=k0. One sees
from Fig. 1 that a�1

eff � �!!� has a strong energy dependence
on the scale of the Fermi energy EF. This is in contrast to
the case of two isolated atoms seen in Eq. (5), where in
the same energy range the real part of �f�1 is a constant
120401-3
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FIG. 1. Imaginary and real parts of the integral I� �!!� in
Eq. (11), as a function of reduced energy �!! � !=� for various
reduced temperatures �tt � T=� indicated in the figure.
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equal to the scattering length a�1. This means that an
essential simplification in the scattering properties effec-
tively disappears. Indeed for ultracold atoms scattering is
characterized by a single parameter, the scattering length
a. Now because of the Fermi sea the energy scale EF
appears and the scattering amplitude gets a complex
energy dependence, which depends also on temperature.
An immediate consequence is that physically the
Feshbach resonance is actually washed out by the Fermi
sea. Indeed instead of having for all possible scattering
atoms a diverging scattering length, and correspondingly
a zero Ref�1, we have a Ref�1 which is of the order 1=kF
and depends on the energy of the two considered atoms
(as well as their momentum as we have seen). This occurs
as soon as ! is not small. In particular nothing special
occurs right at the Feshbach resonance when !�1 � 0.
This provides a simple explanation to the experimental
observations [2] that the resonance is not seen when the
magnetic field is swept through its assumed location
when the gas is dense enough to be in the degenerate
regime (see [2], for example, Fig. 4 of Bourdel et al.).
Naturally the inhomogeneity due to the varying trapping
potential is an additional source of smearing since the
energy scale � is space dependent.

We now look more strictly, in the domain a � 0, for a
resonance where the scattering amplitude diverges, which
for two isolated atoms occurs at zero energy at the Fesh-
bach resonance a�1�0. So we require Im��1� �!!;0��
Re��1� �!!;0��0 in Eq. (11). Since for �!!��2, ReI > 0,
Ref�1 > 0, and the only possible resonance occurs at the
chemical potential �!! � 0. In this case Ref�1 � 0 in
Eq. (11) coincides with the well-known condition for
the BCS pairing instability. In particular, at T � 0, the
logarithmic divergence of Ref�1 which occurs for �!! � 0
is a mark of this instability. It is known that this pairing
instability is basically due to the Pauli exclusion by the
Fermi sea on low energy states, which produces a shift
from a 3D situation to an effective 2D physics. We can
understand qualitatively the strong energy dependence of
120401-4
the scattering amplitude we have found above as a mani-
festation of this 2D physics. Naturally, since we have not
included interactions, the value of the critical tempera-
ture Tc we have for the pairing instability is just the
standard one [3], and it does not contain lower order
fluctuation effects [11] nor higher orders and self-energy
effects considered in recent calculations [12]. Note that
we have not included interactions in I� �!!�, but they will
not change the basic Pauli exclusion physics. We cannot
expect interactions to remove the energy dependence of
the scattering and our qualitative conclusion will remain
unchanged. Finally for a > 0 we can use Eq. (11) to find
the field at which the molecular bound state appears and
relate it to the atom losses found [2] around 700 G. This
will be reported elsewhere [13].

In conclusion we have presented a coherent framework
which allows one to deal with many-body effects in the
presence of a Feshbach resonance. As a simple conse-
quence we have shown that the mere result of the Pauli
exclusion, which results from Fermi statistics, induces a
strong modification of the scattering properties. It is clear
that this modification is a necessary ingredient in the
physical understanding of these systems since Pauli ex-
clusion cannot be ignored. This modification results in
washing out the Feshbach resonance and provides a natu-
ral explanation for recent experimental findings.
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