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Public Channel Cryptography by Synchronization of Neural Networks and Chaotic Maps
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Two different kinds of synchronization have been applied to cryptography: synchronization of
chaotic maps by one common external signal and synchronization of neural networks by mutual
learning. By combining these two mechanisms, where the external signal to the chaotic maps is
synchronized by the nets, we construct a hybrid network which allows a secure generation of secret
encryption keys over a public channel. The security with respect to attacks, recently proposed by
Shamir et al., is increased by chaotic synchronization.
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of a successful attack can be made exponentially small
[9]; it decreases like exp��yL� where the parameter L FIG. 1. Parity machine for K � 3 with chaotic map f.
Two identical dynamical systems, starting from differ-
ent initial conditions, can be synchronized by a common
external signal which is coupled to the two systems [1]. It
has been shown that even chaotic systems can be syn-
chronized although the correlation between the external
signal and the common dynamics still remains chaotic
[2]. This phenomenon has been applied to private-key
cryptography: If two partners A and B want to exchange
a secret message, A adds her message to a synchronized
signal while B subtracts it. Of course, A and B need a
common secret (private key), namely, the algorithm and
the parameters of their identical chaotic system.

Synchronization has recently been observed in artifi-
cial neural networks as well. Two networks which are
trained on their mutual output can synchronize to a time-
dependent state of identical synaptic weights [3]. This
phenomenon has been applied to cryptography as well
[4]. In this case, the two partners A and B do not have to
share a common secret but use their identical weights as a
secret key needed for encryption. The secret key is gen-
erated over a public channel. An attacker E who knows all
the details of the algorithm and records any communica-
tion transmitted through this channel finds it difficult to
synchronize with the parties, and hence to calculate the
common secret key. Synchronization by mutual learning
(A and B) is much faster than learning by listening (E).

Neural cryptography is much simpler than the com-
monly used algorithms which are mainly based on num-
ber theory [5] or on quantum mechanics [6]. In fact, it can
be expressed as synchronization of an ensemble of ran-
dom walks with reflecting boundaries [7]. But the ques-
tion remains: Is it secure? Does an algorithm exist which
can decipher the secret key from the transmitted infor-
mation? For the set of parameters used in Ref. [4] it has
been shown that such algorithms do exist [8]. In an
ensemble of attackers there is a nonzero chance that
some of them will synchronize to the two partners.
However, it has recently been shown that the probability
0031-9007=03=91(11)=118701(4)$20.00 
(stands for the depths of the weights of the networks) is
defined below. Hence for large values of L the computa-
tional time is so long that an attack is infeasible, meaning
that neural cryptography remains secure. Of course, simi-
lar to classic key-exchange protocols, one cannot prove
that there does not exist any other algorithm which cracks
the system.

In this Letter we combine neural cryptography with
chaotic synchronization. Both partners A and B use their
neural networks as input for the logistic maps which
generate the output bits to be learned. By mutually learn-
ing these bits, the two neural networks approach each
other and produce an identical signal to the chaotic
maps which, in turn, synchronize as well, therefore ac-
celerating the synchronization of the neural nets.

We show that the security of the key generation in-
creases as the system approaches the critical point of
chaotic synchronization, and it is possible that the expo-
nent y diverges as the coupling constant between the
neural nets and the chaotic maps is tuned to be critical.

We start with the parity machine (PM) with K hidden
units which are arranged in a tree architecture as shown
in Fig. 1 for K � 3. Each hidden unit has N discrete
weights wk;j which can take the values f�L;�L�
1; . . . ; L� 1; Lg. At every training step the network re-
ceives an input vector consisting of KN components
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xk;j 2 f�1;�1g. Each hidden unit generates a local field

hk �
XN

j�1

wkjxkj: (1)

Previously, the output bit of each hidden unit was the
sign of the local field[4]. Now we combine the PM with
chaotic synchronization by feeding the local fields into
logistic maps:

sk�t� 1� � ��1� ��sk�t��1� sk�t���
�
2
~hhk�t�: (2)

Here ~hh denotes a transformed local field which is shifted
and normalized to fit into the interval 	0; 2
 [10]. For
� � 0 one has the usual quadratic iteration which pro-
duces K chaotic series sk�t� when the parameter � is
chosen correspondingly; in this Letter we use � � 3:95.
For 0<�< 1 the logistic maps are coupled to the fields
of the hidden units. It has been shown that such a coupling
leads to chaotic synchronization [2]: If two identical
maps with different initial conditions are coupled to a
common external signal they synchronize when the cou-
pling strength is large enough, � > �c.

Now we consider the key generation between two
partners A and B. Each partner uses a PM with logistic
maps. Hence each partner has a time series of KN weights

wA=B
kj �t�, K local fields hA=Bk �t�, and K signals sA=Bk �t�. In

addition, a common external sequence of random inputs
xkj�t� is presented to both of the partners. This sequence of
inputs is public, as well as the complete architecture and
the parameters � and �. Each partner generates random
initial weights wA=B

kj �t � 0� which are not public and not
known to each other.

In the original version of neural cryptography [4] the
synchronization of the weights, wA

kj�t� � wB
kj�t� for t >

tsync was achieved by training; for instance, in the sim-
plest symmetric version the training step reads

wA
kj�t� 1� � wA

kj�t� � xkj�t��k�t� (3)

for partner A and the same for partner B and �k�t� is
defined in Eq. (4). When a weight moves outside of the
allowed interval it is reset to the corresponding boundary
value �L. Note that the equation above may be consid-
ered as a random walk with reflecting boundaries.

The security of synchronization is achieved by the
parity construction. The training step is performed only
if the output bits �A; �B of the two PMs are identical and,
in addition, if the output bit �A

k of the hidden unit is
identical to �A. In the parity network one defines

�A=B�t� �
YK

k�1

�A=B
k �t�: (4)

The output bits ��A; �B� which are transmitted at each
training step generate control signals which produce a
mixture of attractive, repulsive, and quiet movements of
118701-2
the corresponding hidden units of A and B. Only the
parity construction gives a low probability of repulsive
steps compared to an attacker PM close to synchroniza-
tion [11].

In the hybrid network introduced here, we keep the
parity mechanism but we define the hidden output bits
�A;B

k by the signals sA=Bk of the logistic maps coupled to
neural networks:

�A
k �t� � sgn�sAk �t� � s0����: (5)

The public parameter s0��� is chosen such that � takes
the values �1 with equal probability.

Now the complete algorithm for the two partners A
and B is defined. The parameter � controls the coupling
strength between the neural network and the chaotic map.
For � � 1 we obtain the PM studied previously [4,11],
since in this limit s0�1� � 1=2, Eq. (5), and �k�t� �
sgn�hk�t��. The two networks synchronize to common
time-dependent weights wA�t� � wB�t�. The average
synchronization time tsync scales with the size of the in-
put as lnN, and is therefore relatively short even for
large systems. The synchronization time also increases
as L is increased, and for L<O�

����
N

p
� one finds that

tsync increases with L2, as expected from random walk
theory [9].

For � � 0 the two chaotic signals �sAk �t�; s
B
k �t�� are not

coupled and just generate random outputs � and �. As a
consequence, the two networks do not synchronize.

By construction, the synchronized state

sAk �t� � sBk �t�; wA
kj�t� � wB

kj�t� (6)

is a fixed point of the dynamics. The question remains: is
it an attractor? In our model synchronization occurs by
two mechanisms simultaneously. The weights of the two
neural nets move towards a common sequence and the
signals of the corresponding chaotic maps move towards a
common chaotic sequence triggered by the local fields of
the networks. Hence it is not at all obvious that synchro-
nization is possible. Our numerical simulations as well as
our analytic [12] calculations show that the two networks
synchronize when the parameter � is larger than its
critical value. The critical value, �c, is defined such that
the average synchronization time, tav, diverges. Figure 2
presents the average synchronization time as a function of
� for K � 1; 2 and L � 10. Results indicate that for K �
1; 2, �c  0:15; 0:35. Note that for K � 1, �c is very close
to the reported result for the synchronization of two
logistic maps using a common white signal [2], instead
of a Gaussian signal, h, as in Eq. (2).

Figure 3 shows that the synchronization time as a
function of L does not depend much on the parameter
�. The average synchronization time, tav, is almost con-
stant for 0:45<�< 1, for all values of L studied.

Now we turn to the problem: Is the observed synchro-
nization secure? Consider an attacker (eavesdropper E)
118701-2
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FIG. 2. The average synchronization time as a function of �,
for L � 10, N � 1000, K � 1 (�), and K � 2 (�). Results
were averaged over 1000 samples. Synchronization here is
defined when all the weights are the same and all the K chaotic
units of the partners are equal in their first six digits.
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who records the exchange of the bits ��A�t�; �B�t�� and
who knows the sequence xk�t� as well as the parameters of
the hybrid networks. Can E calculate the common
weights before the synchronization of A and B?

The most successful attack reported by the group of
Shamir [8] is the flipping attack. We generalize this at-
tack to our hybrid network as follows. The attacker E
uses a network identical to the ones of A and B and trains
its weights only if the output bits of A and B agree. When
�E agrees with �A and �B, the attacker E learns its weights
as defined before, Eq. (3) [11]. However, when �E � �A �
�B the hidden unit with the ‘‘weakest’’ local field ~hhEk is
selected and the sign of its output bit �E

k is changed. With
this redefined hidden unit learning proceeds as usual. The
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FIG. 3. Average synchronization time as a function of L for
K � 2, N � 10 000, � � 0:45 (�), � � 1 (�), and the regres-
sion power-law fits � � 0:45 (dotted line) and � � 1 (dashed
line). Results were averaged over 1000 samples.
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weakest field is the one which has the smallest distance to
the decision boundary given by Eqs. (2) and (5).

Figure 4 shows the main result of this Letter. The inset
of Fig. 4 indicates that the probability of a successful at-
tack decreases exponentially fast with the level number L,

Pflip � A exp��yL�: (7)

But contrary to the synchronization time, this probability
has a strong dependence on the coupling strength �.
Figure 4 shows that the attacker’s success rate Pflip=y
decreases/increases as � approaches the critical value,
�c  0:35, from above. It is clear from Fig. 4 that y
increases as � approaches �c from above, and it is pos-
sible that y diverges close to criticality. However from the
current data we cannot rule out other scenarios including
the one that y is finite at criticality and a further inves-
tigation of this question is required.

Note that the values of � in our simulations are still
far away from the critical point. For a fixed size of the
system N and close to �c the synchronization time in-
creases beyond the scaling reported in Fig. 3. Hence a
finite network is not useful for the key generation close
to �c. Anyway, the main result is that the security of
the network strongly increases when the hidden units
are screened by chaotic synchronization. For example:
The synchronization time of a single attacker scales
like L2N lnN. We need about exp�yL� attackers on the
average to be successful. If we can use one year of a
teraflop computer for each message, we have about
1020 calculations available. Hence, for N � 105, we
need a level number of about L 135 without chaotic
synchronization, � � 1. For � � 0:45, however, we
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FIG. 4. The exponent y as a function of �-�c, where �c �
0:35 (see Fig. 2). In the inset Pflip as a function of L is plotted
for different values of � to obtain y. The results are for K � 2,
N � 10 000 and averaged over 10 000 attackers. The different
lines represent (from top to bottom) � � 1, 0.85, 0.65, 0.55, 0.5,
and 0.45. The slopes of the fitted lines are, respectively,
�0:169, �0:199, �0:286, �0:485, �0:657, and �0:834.
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need a value of L 25 only. It indicates that the two
partners A and B need less than 5% of training steps to
synchronize in comparison to the same system without
chaotic synchronization (� � 1).

Finally, we note that the effect of the chaotic map on a
hidden unit is essentially the generation of noise. We have
replaced the chaotic map in Eq. (2) by randomly flipping
the output bit � � sgn�h� with some probability p mea-
sured in actual simulation. This probability, p, is sup-
pressed to zero as the two neural networks approach each
other. For this approximation we can solve the dynamics
of synchronization analytically, by using the methods of
Refs. [11,13]. We find good agreement between the noise
approximation and the actual simulations using the cha-
otic maps [12].
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