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Locally Accessible Information: How Much Can the Parties Gain by Cooperating?
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We investigate measurements of bipartite ensembles restricted to local operations and classical
communication and find a universal Holevo-like upper bound on the locally accessible information. We
analyze our bound and exhibit a class of states which saturate it. Finally, we link the bound to the
problem of quantification of the nonlocality of the operations necessary to extract locally inaccessible
information.
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and the measurement results Y accessible in sequential
measurements. In the first step, the measurement M1

IM is quantum mutual information, i.e., IM��X:Y� � SX �
SY � SXY .
The problem of local distinguishability of orthogonal
quantum states has direct implications on the use of
quantum correlations as a resource in quantum informa-
tion theory. Although there is no clear universal delinea-
tion of what is and what is not possible for parties
restricted to local operations and classical communica-
tion (LOCC), a number of interesting, often counterintui-
tive results have been reached. For example, any two pure
orthogonal states can be distinguished locally as well as
globally [1]. On the other hand, there are ensembles of
orthogonal product states which cannot be locally distin-
guished [2,3]. Moreover, there are ensembles of locally
distinguishable orthogonal states, for which one can de-
stroy local distinguishability by reducing the average
entanglement of the ensemble states [4].

Naturally, one would like to quantify the message
contained in all these examples (cf. [2,5]). When there
are no restrictions on the allowed measurement strategy,
the classical information about the identity of the state in
an ensemble Q � fpx; %xg, accessible to a measurement,
is limited by the Holevo bound [6]:

Iacc � �Q � S�%� �
X

x

pxS�%
x�; (1)

where % �
P
xpx%

x and S is von Neumann entropy. A
fundamental message carried by this bound is that the
amount of information that can be sent via n qubits is
bounded by n bits. In the present contribution, we general-
ize bound (1) to the case when the information is coded in
bipartite states and the allowed measurement strategies
are limited to LOCC-based measurements. We show that
for any asymptotic measure of entanglement E, the
amount of locally accessible information [7] that can
be sent via n qubits with average entanglement �EE is
bounded by n� �EE bits. We then discuss the possible
saturation of our bound. Also, we link the bound to
entanglement manipulations.

We begin by considering a quantum ensemble fpx; %xg
and the mutual information I�X:Y� between the signals X
0031-9007=03=91(11)=117901(4)$20.00 
produces outcome a 2 Y1 with probability pa. In the
second step, measurement Ma

2 [choice of M2 may de-
pend on the result (a) of M1] gives outcomes ba 2 Y2,
etc. For such measurements, I�X:Y� � I�X:Y1; Y2; . . .�.
The well-known chain rule for mutual information (see,
e.g., [8]) allows one to express the right-hand side of this
identity in terms of the information gains in the single
measurement steps, I1A � I�X:Y1�, I2B � I�X:Y2jY1� �P
apaI�X:Y2jY1 � a�, etc. The chain rule reads

I�X:Y1; Y2; . . .� � I�X:Y1� � I�X:Y2jY1� � . . . : (2)

In other words, the total mutual information is the sum of
the contributions obtained in the consecutive steps. A
multistep measurement can be viewed as a tree; total
mutual information is then equal to the sum of the aver-
age mutual information obtained at each level.

In addition to the chain rule, in order to proceed, we
need to adapt the Holevo bound to sequential measure-
ments, as given by the following lemma.

Lemma 1: If a measurement on ensemble Q � fpx; %xg
produces result y and leaves a postmeasurement ensemble
Qy � fpxjy; %xjyg with probability py, then information
I�1� extracted from the measurement is bounded by

I�1� � �Q � �yQ; (3)

where �yQ is the average Holevo bound for the possible
postmeasurement ensembles.

To prove the lemma, we consider a system consisting of
the state identifiers (X), the ensemble (Q), and the mea-
suring device (Y).

Before the measurement, system XQY is in the state
�XQY �

P
xpxjxihxj � �x � j0iYh0j. The measurement

changes it to �0
XQY �

P
xpxjxihxj � Vy�xV

y
y � jyihyj

which can be rewritten as �0
XQY �

P
ypy

P
xpxjyjxi �

hxj � �yx � jyihyj, where �yx � Vy�xV
y
y =pyjx. We may fur-

ther notice that �yQ �
P
ypy�S�

P
xpxjy�

y
x� �

P
xpxjyS��

y
x��

as well as I�1� � IM��
0
X:Y� and �Q � IM��X:Q�, where
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Since quantum mutual information cannot increase
under a local map we have

IM��
0
X:QY� � IM��X:Q� � �Q: (4)

On the other hand, the chain rule requires that
IM��

0
X:QY� � IM��

0
X:Y� � IM��

0
X:QjY�. The first term here

is I�1�; the second is �yQ, which together with (4) gives the
claimed inequality (3) and the lemma.

The chain rule, together with the lemma and a little
algebra, allows us to prove the following theorem.

Theorem 1: Given ensemble fpx; %xABg of quantum
states %xAB on a bipartite system, the maximal mutual
information I�X:Y� accessible via LOCC between A and
B satisfies the following inequality:

ILOCCacc � S�%A� � S�%B� � max
Z�A;B

X

x

pxS�%
x
Z�; (5)

where %A and %B are the reductions of %AB �
P
xpx%

x
AB,

and %xZ is a reduction of %xAB.
In addition to the chain rule and the lemma, in order to

prove the theorem we need the following two facts:
(i) Knowledge of Alice’s result may reduce the entro-

pies of Bob’s parts of the ensemble states. The average
reduction, � �SSxB cannot, however, exceed either SxB (the
final entropies cannot be negative) or the corresponding
decrease in the entropy of Alice’s parts of the states, � �SSxA
(a measurement on A cannot reveal more information
about B than about A). Also � �SSxB � �SSxA.

(ii) Concavity of entropy and the fact that Alice’s
measurement does not change Bob’s density matrix %B �P
apa%

ja
B (Bob’s ensemble density matrix after he has

learned that Alice’s result was a (with probability pa) is
denoted by %ja

B ) require that Alice’s measurement does not
increase entropy of Bob’s part of the ensemble, i.e.,P
apaS�%

ja
B � � S�%B�.

For definiteness, let Alice make the first measurement,
Bob the second, Alice the third, etc. By the chain rule,
the total information gain in this sequence is given by
ILOCCacc �

P
s�1I

s
Z with Z denoting Alice when s is odd and

Bob when s is even. The lemma bounds this as follows:

ILOCCacc � ��A � ���1
A� � � ���2

A � ���3
A� � � � �

� ��1
B � ���2

B� � � ���3
B � ���4

B� � � � � :
(6)

This inequality can be easily combined with the quoted
fact (ii) into the following bound on information acces-
sible in a multistep local measurement:

ILOCCacc � SA � SB � �SSxA � �SSxB � gA � gB; (7)

where gB � � �SSxB � �SSxj1B � � � �SSxj2B � �SSxj3B � � � � � is the accu-
mulated reduction of the average entropy of Bob’s part of
the signal states due to his knowledge of Alice’s results.
Likewise, gA � � �SSxj1A � �SSxj2A � � � �SSxj3A � �SSxj4A � � � � � is the
accumulated reduction of the average entropy of Alice’s
part of the signal states due to her knowledge of Bob’s
results. A multiple use of fact (i) immediately implies that
gA � gB � min� �SSxA; �SSxB�, which proves the theorem. �
117901-2
While discussing the theorem, note that S�%A� �
S�%B� � n (n � log2d1d2 for a d1 � d2 system) and
maxf �SSxA; �SS

x
Bg � �EEF, the average entanglement of forma-

tion [9] of the ensemble states. Moreover, we know that
any asymptotic measure of entanglement is smaller than
entanglement of formation [10]. This immediately gives
the following simple bound on the locally accessible
information in ensembles of bipartite states:

ILOCCacc � n� �EE (8)

with �EE standing for any asymptotically consistent mea-
sure of the average entanglement of the ensemble states.
As noted in the beginning, this formulation is a direct
analog of Holevo’s result. It can be seen as ‘‘entanglement
correction’’ to Holevo bound for LOCC-based measure-
ments. The bound (8) can also be viewed as a comple-
mentarity relation between locally accessible information
and the average bipartite entanglement, once we write it
as ILOCCacc � �EE � n (cf. [11]). Note also that we have here a
unification of the ‘‘opposite’’ facts that any two Bell states
are locally distinguishable and that the four Bell states are
locally indistinguishable [12]. Both cases saturate relation
(8). Finally, inequality (8) immediately proves that a
complete orthogonal basis of multipartite states must
not contain any entangled state if it is to be locally
distinguishable [4] (cf. [13]).

The fact that the LOCC restriction imposed on the
allowed measurements reduces Holevo bound, brings to
mind associations with coarse graining. It is a well-
known fact in mathematical physics that, under a smaller
algebra of observables, a given state appears as having
increased entropy. Likewise, if one restricts the allowed
measurements to LOCC, then the restriction brings some
additional entropy on the entangled states, just like that
due to coarse graining. In our case, however, the set of the
allowable observables (LOCC) does not have a structure
of an algebra. Therefore, the additional entropy brought
by the LOCC restriction cannot be easily calculated in
general. Moreover, unlike Holevo’s, our bound cannot be
universally saturated, even in the asymptotic limit.

A possible additional source of this lack of the satura-
tion is seen by considering an ensemble of d pure states
ji; ii, �i � 1; . . . ; d� in d � d. This ensemble saturates
Holevo bound (the states are also locally distinguishable).
On the other hand, any nontrivial measurement on Alice’s
side of the ensemble reduces SB, thus making Bob’s in-
formation gain gB negative, and inequality (5) cannot be
saturated. Negative g, as here, indicates an ensemble
where information accessible to Alice overlaps with that
to Bob. Ensembles with positive g are in a way more
interesting. There, Alice’s measurement not only provides
valuable information about her local state, it also in-
creases information accessible to Bob. Thus, Alice and
Bob benefit from genuine cooperation while extracting
information from such ensembles. A room for this coop-
eration permitted by LOCC allows one to, e.g., locally
117901-2
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distinguish any two pure orthogonal states even if these
states are entangled [1]. Note that inequality (5) can be
saturated only when the cooperative gain g attains its
upper bound. It is then legitimate to ask about the extent
to which such a situation is universal. Specifically, in d1 �
d2, with an arbitrary average entanglement �EE �
minflog2d1; log2d2g, can one always find an ensemble
with ILOCCacc � n� �EE (n � log2d1d2)?

Although we were not able to answer the question in
full generality, we found an affirmative answer for 2n1 �
2n1 systems, by designing a class of the required ensem-
bles. Our ensembles are modifications of the ensemble
consisting of the ‘‘canonical’’ set of mutually orthogonal
maximally entangled states in d � d [14]. To construct a
desired ensemble, we take the states a1j00i � a2j11i,
�a2j00i � a1j11i, a1j01i � a2j10i, and �a2j01i �
a1j10i in 2 � 2. The ensemble consisting of these states
with equal prior probabilities saturates (8) for a measure-
ment in the computational basis. The ensemble in 2n1 �
2n1 contains then (with equal prior probabilities) all the
possible n1-times tensor products of the above four states.
For example, if the partners are Alice and Bob, then in
4 � 4, the states are �a1j00i � a2j11i�A1B1

� �a01j00i �
a02j11i�A2B2

, �a1j00i � a2j11i�A1B1
� ��a02j00i �

a01j11i�A2B2
, etc., where A1A2 is at Alice and B1B2 is at

Bob. Separate measurements by A1B1 and by A2B2 in their
computational bases saturate bound (8) (see [15]).

Having obtained the bound n� �EE for ILOCCacc , one would
also like to understand the deeper physical principles that
facilitate it. This could, among others, help us to general-
ize the result into a multipartite scenario. In a search for
such principles, we linked the bound to the rules of local
manipulations of entanglement. This can be regarded as a
step towards quantification of the nonlocality of the op-
erations which are required to access locally inaccessible
information stored in orthogonal sets of states.

Consider then an ensemble of arbitrary signal states
fpx; %xABg and arbitrary ‘‘detector’’ states f�xCDg
(cf. [4,12,16]). Initially, let the signals and the detectors
be in a joint state %ABCD �

P
xpx%

x
AB � �

x
CD with relative

entropy of entanglement EAC:BD�%ABCD� [17] in the
AC:BD cut. At this point, neither the signals nor the
detectors are mutually orthogonal or pure. We use this
setup in order to address the following question: Can the
information deficit Iglobalacc � ILOCCacc be linked to the mini-
mum potential for average entanglement production (in
the distinguishing process) necessary to reach the glob-
ally accessible information Iglobalacc ? We need the setup,
since gaining information about the signal (x) can destroy
the signal states (%xAB) and their entanglement. But the
signal states can (in principle) be correlated with any
ancilla (detector). An information gain about x will
then usually purify the detector state, thus allowing for
a potential average production of entanglement, even if
the entanglement of the signal states is destroyed.

A measurement in the AB part (not necessarily re-
stricted to LOCC) and obtaining results jwith probability
117901-3
qj will leave CD in "jCD �
P
xpxjj�

x
CD, thus accessing

informationHs �
P
jqjH�fpxjjg�, which is no greater than

Hs �
P
jqjS�"

j
CD� �

P
xpxS��

x
CD� (equality holds for

orthogonal detector states), where H�frig� �
�
P
irilog2ri, and Hs � H�fpxg� is the Shannon entropy

of the source. Let %E � �EEdet
in � EAC:BD�%ABCD�, where

�EEdet
in �

P
xpxE��

x�. Restricting now to LOCC-based mea-
surements in the AB part and considering it as an LOCC
in the AC:BD cut, we have %E � �EEdet

in �
P
jqjE�"

j
CD�,

which equals �
P
xpxS��

x� �
P
jqjS�"

j� �
P
xpxmax&x �

tr�xlog2&
x �

P
jqj

P
xpxjjmax& tr�xlog2& (maximizations

over separable states), which is in turn clearly not more
than

P
jqjS�"

j� �
P
xpxS��

x�. And so we have

Hs � ILOCCacc � %E: (9)

For orthogonal ensembles, Hs is the globally accessible
information �Iglobalacc �, so that Iglobalacc � ILOCCacc � %E, where
%E is just the average amount of entanglement produced
(in the distinguishing process) by a superoperator that
distinguishes between the ensemble states, if we disre-
gard the entanglement possibly left in the ensemble states.
The relation (9) holds for arbitrary detectors and hence
when %E is maximized over detectors. The nontrivial
cases are when the orthogonal ensemble is locally indis-
tinguishable, so that one requires a nonlocal superopera-
tor to distinguish between them, and correspondingly one
has a possibility of positive %E. We assume here a ‘‘black
box’’ model of the superoperator that distinguishes be-
tween the ensemble states. So, we are allowed to look at
the classical output of the superoperator after it distin-
guishes, but we are not allowed to manipulate the quan-
tum output. One may also consider the entanglement
produced in the whole state in the AC:BD cut and include
a minimization over measurement strategies, required to
(possibly nonlocally) distinguish the ensemble. This for-
mulation is of course the same as the previous one (due to
the minimization here). Thus %E gives us a notion of
entanglement production, on average, in the process of
(possibly nonlocally) distinguishing an ensemble when
the black box is fed with the state %ABCD we used.We hope
that it holds even when the signals and detectors are
quantum correlated. That is, we conjecture that the differ-
ence between globally and locally accessible information
for an ensemble of orthogonal (not necessarily pure)
states is not less than the amount of the relative entropy
of entanglement which can be created in a global mea-
surement to access Iglobalacc (i.e., distinguish the ensemble).
For nonorthogonal ensembles, there is a further reduction
of globally accessible information from Hs, due to the
(global) indistinguishability of nonorthogonal states,
which can make the problem more complicated.

To further link relation (8) to entanglement manipula-
tions, we prove it for a restricted case, by using the
inequality in (9). Taking the orthogonal ensemble
fpx; %xABg as fpnm; j max

nm ig [14] in d � d and the detectors
117901-3
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as fj max
nm i�g (with conjugation in the computational ba-

sis), we have EAC:BD�%ABCD�fpnmg�� � S�%AC:BD�fpnmg� �
j%AC:BD�fpnm � 1=d2g�� � 2log2d�Hs, where S��j)� �
tr��log2�� �log2)� [note that �AC:BD�fpnm � 1=d2g� is
separable (cf. [16])]. Therefore for such ensembles, we
again obtain ILOCCacc � 2log2d� �EE � n� �EE [see Eq. (9)]
by a completely different method. In the general case, can
we always find such detectors that EAC:BD�%ABCD� �
2log2d�Hs or EAC:BD�%ABCD� � SA � SB �Hs? We be-
lieve that understanding this question would be important
in generalizing our considerations here to a multipartite
scenario.

A possible way to improve the bound (5) for bipartite
states would be to relate the accumulated bound on � �SSxB
due to Alice’s measurement not to �SSxA but to classical
mutual information contained in %xAB. Likewise, there
should be some room for handling nonlocality without
entanglement-like examples [2–4]. For that, a possible
candidate would be an object like ‘‘information deficit’’
[18], although with some modifications. In particular,
information deficit would have to be redefined for en-
sembles rather than for states, e.g., as the information loss
under a fixed map applied independently of the coming
signal. Another obstacle is that the present definition of
information deficit is slightly different in spirit from
accessible information. In particular, it is known that to
achieve ILOCCacc , one sometimes has to add pure ancillas [3],
which most likely is not the case for information deficit.
The proper direction would then be to extend the defini-
tion of information deficit to relative entropy loss, rather
than negentropy loss.

The concept of the main inequality came up at the
meeting of Gdańsk Quantum Information Group (2002).
We thank Karol Horodecki and Jonathan Oppenheim for
useful discussions. The concept of estimate (9) arose in
discussions with Karol Horodecki. P. B. thanks the
University of Gdańsk for hospitality. This work is sup-
ported by EU Grants EQUIP, RESQ, and QUPRODIS and
by the University of Gdańsk, Grant No. BW/5400-5-
0256-3.
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