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Universal Spin-Flip Transition in Itinerant Antiferromagnets
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We reveal a universal spin-flip (SF) transition as a function of temperature in spin-density-wave
(SDW) systems. At low temperatures the antiferromagnetic (AFM) polarization is parallel to the
applied field and above a critical temperature the AFM polarization flips perpendicular to the field. This
transition occurs in any SDW system and may be considered as a qualitative probe of the itinerant
character of AFM in a given material. Our SF transition may provide an explanation to the long-
standing puzzle of the SF transition observed in chromium and may be at the origin of the equally
puzzling SDW-I to SDW-II transition in Bechgaard salts for which we make experimental predictions.
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low T, but such a picture is not consistent with the trans- of the magnetic field are irrelevant in the SDW state. The
The study of itinerant antiferromagnetism (AFM)
started in the early 1950s when this state was first ob-
served in chromium [1] and since then it has been a field
of continuous interest related to some of the most fasci-
nating problems in materials physics. The first consistent
theoretical scheme for itinerant AFM has been elaborated
by Overhauser [2] who introduced the spin density wave
(SDW) picture. The itinerant character of AFM and the
relevance of the SDW picture in chromium are firmly
established experimentally [3,4]. Several decades of in-
tense theoretical work led to the construction of a suc-
cessful microscopic SDW model for chromium [2,5–12].
However, there is still a surprising aspect of the AFM
behavior in this material which escapes any microscopic
understanding so far. It is the famous spin-flip (SF) tran-
sition as a function of temperature for which there are
only phenomenological accounts within a Landau frame-
work [4,13–15]. Spin-orbit coupling and dipole-dipole
interactions have been shown to be unable to produce a
spin-flip transition with temperature [16]. Lacking any
microscopic understanding of this first order SF transi-
tion, it is viewed up to now as a mysterious peculiarity of
chromium.

Other very extensively studied SDW materials are the
so-called Bechgaard salts which attracted much interest
not only for their SDW behavior, but also for its interplay
with superconductivity and related exotic phenomena
such as field-induced SDW transitions and quantum-
Hall-effect phenomena [17]. These salts are quasi-one-
dimensional organic compounds having the form
�TMTSF�2 � X where X denotes a monovalent ion and
TMTSF is for tetramethyltetraselenafulvalene [18]. It has
been established recently that inside the SDW phase there
is a surprising transition to a new SDW phase [19,20].
This SDW-I to SDW-II transition manifests by a sudden
change in the T behavior of the NMR relaxation rate from
linear just below TNeel to an exponential Arhenius behav-
ior at lower temperatures [19,20]. So far, this phenomenon
has been regarded as a peculiar transition from an in-
complete SDW state below TN to a complete SDW state at
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port behavior. A spin glass transition has also been in-
voked [21].

In the present Letter we point out that the spin-flip
transition observed in chromium may in fact be a totally
generic phenomenon in itinerant AFM. We show that the
zero temperature field-induced spin-flop transition in
itinerant AFM, at finite temperatures it occurs at a lower
critical field and at a sufficiently high temperature it
occurs at an arbitrarilly small field giving rise to the
T-induced spin-flip transition. This SF transition is abso-
lutely generic characterizing any SDW state and therefore
should manifest in all itinerant antiferromagnets when
crystal fields are negligible. Such a generic behavior of the
SDWstate has not been noticed so far, probably because in
most theoretical works on SDWa one-dimensional frame-
work was adopted lacking the extra spatial dimensions
involved in the SF transition. Several aspects of the well-
studied SF transition in chromium [4] are in agreement
with our SF transition. As for the SDW-I to SDW-II
transition in TMTSF’s, we predict the identification of a
similar SF transition as the one observed in chromium
when the measurements of Ref. [22] will be extended to
lower temperatures. In fact we argue that the available
NMR data [19,20] are totally compatible with our SF
transition. Our SF transition can be regarded as a quali-
tative probe of the itinerant SDW character of AFM in a
given material.

We consider the most general mean-field Hamiltonian
describing a SDW state in the presence of a uniform
magnetic field:

H �
X
k;�

�k�c
y
k�ck� ��B

X
k;�;�

cyk��� �H�ck�

�
X
k;�;�

���n���Mk�c
y
k�ck�Q��H:c:�; (1)

where
;� index the spin,Mk is the SDWorder parameter
that may be anisotropic in some cases, n defines the axis
of the magnetic polarization of the SDW, and H the Pauli
contribution of the applied magnetic field. Orbital effects
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electronic dispersion �k considered in the numerical cal-
culations reported here is a tight-binding scheme for a
square two dimensional lattice with nearest-neighbors
hoping �k � t�coskxa� coskya�. However, our results
are independent of the choice of the dispersion as we
have verified numerically and discuss later.

To allow for any relative orientation between the
SDW polarization and the direction of the field we will
use an eight-component spinor formalism. This eight-
component space is overcomplete for the present problem,
however, it allows us to consider elsewhere the same
phenomena in the presence of additional order parameters
[23] avoiding a problem dependent formalism. Our space
is defined by the eight-component spinor


y
k � �cyk"c

y
k#c�k"c�k#c

y
k�Q"c

y
k�Q#c�k�Q"c�k�Q#�: (2)

The following tensor products provide a convenient basis
for the projection of the Hamiltonian in this spinor space
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�̂� i � �̂�i 
 �ÎI 
 ÎI�; �̂�i � ÎI 
 ��̂�i 
 ÎI�;

�̂�i � ÎI 
 �ÎI 
 �̂�i�;
(3)

where �̂�i are Pauli matrices in usual notations and I
the 2� 2 identity matrix. This type of multicompo-
nent formalism has been used for the study of mag-
netic superconductors [24] and recently for the study
of excitonic ferromagnetism and colossal magnetoresis-
tance [23].

When H k n our Hamiltonian (1) can be written in the
eight-component spinor space as follows:

ĤH k �
X
k


y
k��k�̂�3�̂�3 �Mkk�̂�1�̂�3�̂�3 ��BH�̂�3�̂�3�
k:

(4)

The Green’s function corresponding to this Hamiltonian
is now an 8� 8 matrix which can be shown to take the
following form in our representation:
ĜGk�k; i!n� � � 
i!n��k�̂�3�̂�3 �Mkk�̂�1�̂�3�̂�3 ��BH�̂�3�̂�3�
!2
n��2k �M2

kk��2
BH

2 � 2�k�BH�̂�3�̂�3 � 2Mkk�BH�̂�1�

� 
!2
n�E2

�k
�k���1
!2

n�E2
�k
�k���1; (5)
where

E�k�k� �
���������������������
�2k �M2

kk

q
��BH: (6)

The SDW gap equation results from the self-consistency
relation Mkk �

1
8T
P

k0

P
n Vkk0 � Trf�̂�1�̂�3�̂�3ĜGk0nkg and

after analytic summation over the Matsubara frequencies
it can be shown to take the following form:

Mkk �
X
k0

Vkk0

Mk0k

4
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!#
; (7)

which is identical with the gap equation of a singlet BCS
superconductor in a Zeeman field. The field �BH appears
only in the hyperbolic tangent functions and in the zero
temperature regime we have j tanh�E�k�k�=2T�j � 1.
Therefore a magnetic field smaller than the critical
field and parallel to the polarization of the SDW has
practically no influence on the SDW in the zero tempera-
ture regime. On the other hand, when the field is suffi-
ciently large �BH > Mkk then in the T ! 0 regime
tanh�E�k�k�=2T� � � tanh�E�k�k�=2T� � �1 and the
SDW is eliminated. Therefore, in the T ! 0 regime there
is a critical magnetic field parallel to the polarization of
the SDW (�BHc � Mkk if the gap is isotropic) that can
melt the SDW. This is the analog of the well known
Clogston-Chandrasekhar critical field [25] in supercon-
ductivity which has indeed been observed in supercon-
ducting films when the field is applied parallel to the film
planes [26].

Numerical solutions of the gap equation confirm this
behavior [see Fig. 1(a)]. Indeed, in the zero temperature
regime Mkk as a function of the field has a steplike
behavior and for �BH > Mkk [in the example shown in
Fig. 1(a) the gap is isotropic], Mkk is identically zero. The
melting of the SDW when �BHc � Mkk manifests al-
ready in the structure of the poles of the Green’s function
reported in (6). One of the two quasiparticles poles
E�k�k� moves to zero when �BHc � Mkk and there is
no gap on the Fermi surface. Because in E�k�k� the field
�BH and the SDW gap Mk contribute into terms which
have opposite sign we can say that the H k n magnetic
field is in direct competition with the SDW. The situation
will be shown below to be different if the polarization of
the SDW is perpendicular to the field.

We now consider the case in which H ? n. In the same
eight-component formalism our Hamiltonian (1) can be
written as follows:

ĤH ? �
X
k


y
k��k�̂�3�̂�3 �Mk?�̂�1�̂�3�̂�3 ��BH�̂�3�̂�1�
k:

(8)

The corresponding matrix Green’s function diagonalized
in our representation takes the following form:
ĜG?�k; i!n� � � 
i!n � �k�̂�3�̂�3 �Mk?�̂�1�̂�3�̂�3 ��BH�̂�3�̂�1�
!
2
n � �2k �M2

k? ��2
BH

2 � 2�k�BH�̂�3�̂�1�

� 
!2
n � E2

�?�k��
�1
!2

n � E2
�?�k��

�1; (9)

and the quasiparticles poles are now defined by
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FIG. 1. (a) Evolution of the SDW gap as a function of the
magnetic field in the zero temperature regime when the SDW
polarization is parallel (dashed line) or perpendicular (full
line) to the field direction. At low fields the parallel polariza-
tion has a lower free energy (higher SDW gap). When �BH
exceeds the gap, only the perpendicular polarization has a
finite gap leading to the spin-flop transition from parallel (at
low fields) to perpendicular SDW polarization as a function of
the field. (b) Same as in (a) but at a finite temperature T �
0:5TN . The spin-flop transition is eliminated.
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E�?�k� �
���������������������������������������������
��k ��BH�2 �M2

k?

q
: (10)

From the structure of the poles it is already obvious that
the perpendicular field is not in direct competition with
the SDW. None of the quasiparticle poles given in (10)
can be set to zero no matter how large the magnetic field
is. This indicates that the magnetic field cannot melt the
SDW. Let us check this by calculating the gap equation
which can now be shown to take the following form:

Mk?�
X
k0

Vkk0Mk0?



1

4E�?�k0�
tanh

�
E�?�k0�

2T

�

�
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4E�?�k0�
tanh

�
E�?�k0�

2T

��
: (11)
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Only in the limit �BH ! 1 the gap equation provides an
identically zero solution. Moreover, any finite perpendicu-
lar field reduces gradually the SDW gap (because it ap-
pears in the denominator) even in the T ! 0 regime no
matter how small it is in sharp contrast with the parallel
field behavior where in the T ! 0 regime fields smaller
than the gap have practically no influence.

The above behavior in the T ! 0 regime is verified by
numerical solutions as shown in Fig. 1(a). Therefore, if
the polarization n of the SDW is free as in any perfectly
itinerant SDW system, we naturally expect the following
behavior of n in the presence of a field in the T ! 0
regime. For weak fields the polarization of the SDW
will chose the direction parallel to the field since in that
way it is insensitive on it. As the field grows, and as long
as it remains smaller than the gap, n remains locked
parallel to the direction of the field. When the field equals
the gap, the SDW will suddenly flip its polarization from
nkH to n?H. This first order transition illustrated in
Fig. 1(a) is the itinerant counterpart of the well studied
spin-flop transition in the localized magnetism picture.
However, the situation is qualitatively different here. In
fact, in the localized magnetic moments picture, at any
finite field the moments have a tendency to be perpen-
dicular to the field, while here this tendency exists only
above the critical field.

More suprising, and without counterpart in the local-
ized limit, is the behavior of our spin-flop transition at
finite temperatures. Finite temperature solutions of the
gap equations indicate that although at low temperatures
and low fields the nkH state prevails [see Fig. 1(a)], at a
higher temperature T � TN=2 the n?H state prevails
whatever the field [Fig. 1(b)]. Above a given temperature,
the magnetic field-induced spin-flop transition is in fact
eliminated. In fact, the condensation free energy is a
growing function of the gap and consequently the states
with the higher gap have also the lowest free energy. An
example of the evolution of bothMk andM? as a function
of the field and the temperature is reported in Fig. 2. The
zero temperature spin-flop transition from nkH to n?H,
by rising the temperature it appears at lower critical fields
and at T � 0:435TN the critical field of this transition is
zero. The physical origin of this thermally induced spin-
flip (SF) transition is probably related with the phase
space for spin fluctuations. In fact, with the SDW polar-
ization perpendicular to the field, the available phase
space for thermal excitation of the spins is larger than
in the case of a polarization parallel to that of the field. At
a sufficiently high temperature this phase-space gain
apparently dominates inducing the SF transition.

Our SF transition displays as a function of the field and
the temperature many of the characteristics of the SF
transition in chromium [4] which we believe is its most
obvious physical realization. We must note here that in
chromium the spin-flip transition is usually discussed
with respect to the direction of the CDW wave vector Q
and not of the magnetic field. However, a sharp first order
117201-3
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FIG. 2 (color online). Evolution of the SDW gap as a function
of the magnetic field and temperature for parallel (red) and
perpendicular (blue) to the field polarization of the SDW. At
low fields and temperatures the parallel polarization prevails.
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transition is observed only when the field and Q are
parallel, and as our analysis points out, it is in fact the
direction of the field that matters. The relevance of our
picture is further supported by the fact that the order of
magnitude of the ratio TSF=TN in chromium is just in the
range in which we predict this transition should happen.
Moreover, when particle-hole asymmetry is introduced
including, for example, a next nearest-neighbors hopping
term in our dispersion and reducing thus the nesting, our
TSF=TN is reduced and this precisely what is observed by
alloying chromium [4]. The most likely range of this
transition is 0:20TN � TSF � 0:45TN , the highest value
being indicative of a particle-hole symmetric system. In
bare chromium TSF � 0:395TN which is just in the range
where we expect our SF transition.

As for the SDW-I to SDW-II transition in Bechgaard
salts, here as well it happens precisely in the temperature
range in which we predict our SF transition (� TNeel=3).
Moreover, the Arhenius low-T behavior of the NMR
relaxation rate [19,20] is consistent with n locked parallel
to the field while the linear Korringa behavior at higher T
and up to TNeel is consistent with both n perpendicular to
the field and the observed insulating transport behavior.
We predict that extending the measurements of [22] to
temperatures below 4 K could definitely establish the SF
character of the SDW-I to SDW-II transition which is
observed at about 3.5 K in Bechgaard salts.

In conclusion, we have shown that in all SDW systems
occurs a SF transition by varying temperature. In the
low-Tphase the SDW polarization is parallel to the field
while above the SF transition it is perpendicular. This SF
117201-4
transition has been identified in chromium and is likely to
be the origin of the SDW-I to SDW-II transition in
Bechgaard salts. It represents the fingerprint of the itin-
erant character of AFM in a given material.
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