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Specific Heat of Classical Disordered Elastic Systems
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We study the thermodynamics of disordered elastic systems, applied to vortex lattices in the Bragg
glass phase. Using the replica variational method we compute the specific heat of pinned vortons in the
classical limit. We find that the contribution of disorder is positive, linear at low temperature, and
exhibits a maximum. It is found to be important compared to other contributions, e.g., core electrons,
mean field, and nonlinear elasticity that we evaluate. The contribution of droplets is subdominant at
weak disorder in d � 3.
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the contribution of the phonons of the vortex lattice VL,
the so-called ’’vortons,’’ seems to be within experimental

dim-vector, and s is the distance between layers. For the
triangular VL:
Understanding the temperature dependence of the spe-
cific heat in glasses remains puzzling, e.g., the linear low
T behavior observed in structural glasses [1] and spin
glasses [2]. In some systems the crossover temperature
from quantum to classical behavior may be quite low. The
phenomenological two levels system model [3] yields a
linear behavior both in the classical and quantum regime.
Although the classical problem appears simpler there are
only few, and mostly mean field, solvable models of
glassy systems where one can actually compute the spe-
cific heat [2,4]. Ordered systems with continous symme-
try admit spin wave type excitations which yield a
T-independent specific heat Cv � Ceq from the equipar-
tition of the energy. Nonlinearities such as quenched
disorder will cause a deviation which is interesting to
characterize and compare with the linear contribution
from the two level system arguments.

A class of glassy systems recently much studied is
disordered elastic systems, ranging from vortex lattices
[5–8], electron crystals [9], charge and spin density
waves [10] to disordered liquid crystals [11]. In all of
these systems the competition between disorder and elas-
ticity leads to pinning and glassy behavior. Specific heat
measurements in density waves gapped systems showed
intermediate linear and sublinear regimes with non-
equilibration effects [12,13]. In superconductors in a field,
the H and T dependence of Cv relates both to the sym-
metry of the order parameter and to the thermodynamics
of the vortex lattice. If the contribution of the normal
electrons in the vortex cores dominates, the standard
expectation is that Cv is linear in T with a linear in H
dependence for s wave [14] and H1=2 for d wave [15]. A
specific heat linear in temperature has indeed been mea-
sured in various materials. A H1=2 dependence has been
observed and argued for d-wave superconductivity in
YbaCuO [16–18]. However the nonlinear H dependence
observed in other, a priori non-d-wave materials, is a well
known puzzle, as discussed in [19,20]. On the other hand,
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resolution [21], and may lead, within the full temperature
range below VL melting, to more complex behaviors.
These were analyzed in the absence of disorder, assuming
a dissipative quantum dynamics with friction � arising
from interactions between vortons and vortex core elec-
trons [22,23]. It yields again Cv / �T with different H
dependence but only for T < TD

v , the vorton Debye-like
temperature which is poorly known (estimates in
YBaCuO range from well below 1 K up to 10 K in the
superclean limit [22]). Above TD

v one recovers the equi-
partition value to which the specific heat anomaly was
compared at melting [24–27]. These analyses, however,
neglect disorder and other nonlinearities which for
T > TD

v can be treated classically.
In this Letter, we compute the specific heat of an elastic

system in the presence of pinning disorder in the classical
regime. We show that disorder produces a substantial rise
above equipartition, linear at low temperature and exhib-
iting a maximum at a characteristic depinning tempera-
ture. We show that in d > 2 the contribution from the
two-well droplet arguments is subdominant at weak
disorder. We find that the disorder contribution is quite
sizable compared to other contributions, e.g., of the non-
linear elasticity that we also evaluate. These results hold
for a periodic object, i.e., a Bragg glass, or for interfaces
with continuous degrees of freedom. In a companion
paper [28] an analysis of the quantum regime revealed,
in the absence of dissipation, a Cv � T3 behavior.

An elastic system, such as the vortex lattice (VL) with
external field aligned with z axis, is described by a
N-component vector displacement field u��Ri; z� (N � 2
for theVL in d � 3). The equilibrium positions Ri form a
perfect N-dimensional lattice of spacing a. Interactions
result in an elastic energy Hel associated to the phonons
of the vortex lattices Hel�u� �

1
2

R
q u��q�����q�u���q�.

Here
R
q 	

R
BZ�d

2q?=�2��
2�
R�=s
��=s�dqz=�2��� denotes

integration on the first Brillouin zone, q � �q?; qz� a d
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��q� � �c66q
2
? � c44q

2
z�P

T�q?�

� �c11q
2
? � c44q

2
z�P

L�q?�; (1)

with PL
�;��k� � k�k�=k2 and PT � I � PL. The dis-

persion of elastic moduli is implicit whenever needed.
Impurity disorder is modeled by a short range Gauss-
ian random potential with in plane correlator 
�r� �
�s�2

0e
�r2=�4r2

f� interacting with the local vortex density.
Here 2rf � " the superconducting coherence length, �0 �
��0=4�#�2 is the vortex energy scale per unit length
along z, and � is a (small) dimensionless disorder pa-
rameter [29]. The equilibrium Bragg glass phase (absence
of dislocations, a=Ra � 1, Ra being the translational cor-
relation length) is described by the replicated partition
function Zn � Tre��Heff , � � 1=T, and ::: denotes disor-
der average. After standard manipulations [30] the repli-
cated Hamiltonian becomes Heff�u� �

P
aHel�u

a� �
Hdis�u� with:

Hdis � �
�
2

Z
d2rdz

X
ab

R�ua�r; z� � ub�r; z��: (2)

Here R�u� � '2
0

P
K
K cos�K  u� in terms of '0 the

average vortex density and the disorder harmonics

K �

R
dNueiKu
�u� at the reciprocal lattice vectors.

More generally, an elastic manifold (such as a directed
polymer d � 1) in a N-dimensional embedding space in
the presence of a random potential W�u; x� is described by
a similar model with W�u; x�W�u0; x� � ��d��x� x0� �
R�u� u0�, R�u� � �NV�u2=N�. We compute the spe-
cific heat per unit volume Cv�T� � ��T=���@2F=@T2�
where F is the free energy, � � Ld the volume.We present
the method using an isotropic disorder and elasticity
tensor ����q� � cq2���, and generalize to the vortex
lattice later.

To obtain the low T behavior, a first approach would be
to assume a single minimum of the energy H�u� and
expand around it. One then finds:

Cv�T� � Ceq � AT �O�T2�: (3)

The exact expression for the linear term A � A1min, given
in [31], involves cubic and quartic anharmonicity in H�u�
in a given disorder realization. Disorder averaging is only
easy to perform perturbatively in disorder, yielding:

A � A1min;pert � �
1

6
J3

1�r
2
u�

3R�u�ju�0; (4)

with J1 �
R
q 1=�cq2� [for the manifold problem it gives

A � 4J3
1�N

2 � 6N � 8�V 000�0�=�3N�]. Although such a
single minimum low T expansion is useful for pure
systems, such as the Sine-Gordon model, for disordered
systems more than one minimum typically exists beyond
the Larkin length Rc. The resulting contribution to the
specific heat can then be estimated combining the droplet
picture with the two levels argument [3,32]. At each
length scale l each of the subsystems i 2 �L=l�d may
have a low lying secondary minimum (droplet) at exci-
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tation energy Ei independently distributed with probabil-
ity P�E�dE � �dE=Ec��Rc=l�

3F �ER3
c=Ecl

3� where Ec is
the typical pinning energy Ec � cr2

fR
d�2
c , 3 the free

energy exponent. Approximating the contribution from
scale l to the specific heat as:

Cl � L�d
X�L=l�d
i�1

�
Ei

T

�
2 e��Ei

�1 � e��Ei�2
�

�2

6

TF �0�

Ecl
d

�
Rc

l

�
3
;

treating as independent two level systems, Cv �R
l>Rc

�dl=l�Cl is dominated by the smallest scales,
yielding:

Adrop �
�2F �0�

6�d� 3�
E�1
c R�d

c : (5)

While the two wells-droplet argument estimates as
Adrop the contribution only of scales larger than Rc, one
can only hope to use A1min to estimate the contributions of
scales smaller than Rc. It is thus instructive to compare
them. The perturbative expression (4) is infrared diver-
gent for d � 2 as thermal fluctuations diverge. If one
restricts by hand the integral in (4) to q > 1=Rc one finds
a contribution of the same order as the droplet one Adrop.
In d > 2 the integral is instead controlled by small scales
and the droplet contribution is then subdominant. The two
levels droplet model of [3] can be improved by including
anharmonicity in each well, for identical wells it simply
adds A � A1min � Adrop.

The variational method [30,33] extends these phe-
nomenological considerations into a first principle quan-
titative calculation in which the Larkin length naturally
appears in a self-consistent way. We introduce a Gauss-
ian trial Hamiltonian H0 �

1
2

R
q G

�1
��;ab�q�u

a
��q�u

b
���q�

which minimizes the variational free energy Fvar �
F0 � hHeff �H0iH0

, where F0 denotes the free energy
calculated with H0. The specific heat Cv � limn!0 �
@T@��Z

n=n�� can be reexpressed as

Cv � @T lim
n!0

1

n�

��X
a

Hel�ua�
�
Heff

�2hHdis�u�iHeff

�
: (6)

Note the factor of 2 due to the � dependence of the
disorder term. Here we evaluate these averages using the
variational Hamiltonian H0 instead of the exact one Heff .
Thanks to the variational equations this is equivalent to
Cv�T� � ��T=��@2Fvar=@T2.

We applied this variational approach to some pure
models and checked that it is quite accurate [31]. At low
T it exactly matches the expansion around the minimum
Avar � A1min and we checked, for the Sine-Gordon model
in d � 2, that it is identical to the low T expansion of the
exact result [34].

In the disordered case the solution of the variational
equations requires replica symmetry breaking (RSB).
One denotes ~GG�q� � Gaa�q� and parametrizes Ga�b�q�
by G�q; u�, where 0 < u < 1 and similarly for
Bab�x � 0� � Bab � h�ua��x� � ub��x��2i=N with ~BB � 0
and B�u�. For d > 2 one finds [30,33] a continuous RSB
117002-2
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FIG. 1. Specific heat Cv�T� � Ceq in arbitrary units as a
function of T=T�.
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with a breakpoint uc and

B �u > uc� � B � 25TJ1���; (7)

1 � �45V̂V 00�B�J2���; (8)

Jn�z� �
Z
q

1

�cq2 � z�n
; � � cR�2

c ; (9)

where 5 � 1, V̂V�B� � � 1
N '

2
0

P
K
K exp��BK2=2�, and

Rc is the Larkin length [35]. Equation (8) is the so-called
marginality condition (MC) which also holds for the one
step solution in d � 2. Starting from the expression:

1

N�
hHi�

Z
q

1

2
q2 ~GG�q��

1

T

Z 1

0
du�V̂V�0�� V̂V�B�u���; (10)

which, as B�w� � B�u� (setting w � u=T) and wc �
uc=T [36], turns out to depend implicitly on T only
through � and B, and using (6)–(9), one obtains for the
specific heat

Cv�T� � Ceq �
N

T2 F�B�;

F�B� � V̂V�B� � V̂V�0� �BV̂V 0�B� �
1

2
B2V̂V 00�B�;

(11)

where Ceq �
1
2N =� � N

2

R
q is the equipartition value,

i.e., half the total number of modes per unit volume [37].
Equation (11) is valid for any T, for periodic objects
(Bragg glass) as well as manifolds, and independently
of the replica structure of the solution (if broken, pro-
vided MC holds). One thus finds that disorder increases
the specific heat which has now a maximum and de-
creases back to equipartition Ceq at high T. Expanding
(11) at low T one finds again (3) with an amplitude Avar �
8
3!NV̂V000�0�J1��T�0�

3. For weak disorder Rc > a, disper-
sionless elasticity and rf < a, one finds from (7)–(9)
Avar � ~AA=�cr2

fRca
3�, ~AA � ��N�N � 4��=96 indeed larger

by a factor �Rc=a�
3 than (5). It also confirms the above

discussion: thanks to RSB (i.e., � � 0), the problems
(e.g., in d � 2) of single minimum (i.e., replica symmet-
ric) perturbation theory are cured, the Larkin length
being the natural scale. A plot of Cv�T� is shown on Fig. 1

The generalization to the vortex lattice using (1) and
N � 2 is straightforward. Equation (11) still holds, but
in the formulas (7) and (8) which determine B and
� � c66R

�2
c one sets 5 � 1

2 and replaces Jn��� �R
q�c66q2

?� c44q2
z ����n (we neglect compression

modes, i.e., c66=c11 � 1).
Taking dispersion in c44 and anisotropy into account

yields several regimes analyzed in [31], and for simplicity
we present here only results for the weak disorder regime
Rc > a. The fluctuation of a vortex position is then mea-
sured from B � TJ1��� � TJ1�0� � c2

La
2T=Tm, where

Tm is the melting temperature and cL � 0:1–0:2 is the
Lindemann number. Inserting in (11) this yields Cv�T�
which has a maximum for T � T�, i.e., B � B� deter-
mined by solving 4F�B�� � �B��3V̂V000�B��. These fluctua-
117002-3
tions are estimated as J1��� � 1=�4a
													
c66c44

p
� where here

and below we denote c44 � c44�q? � �=a� [below the
dimensional crossover field, c66=�c44a2� � 1=s2, the in-
tegral over qz can be extended up to infinity and the
integral is dominated by q? � �=a].

We can now discuss in detail the behavior of Cv�T�
for rf < a. In this limit V̂V�B� takes the dependence
V̂V�B� � �D=�2r2

f �B�, with D � �r2
fs�

2
0=a

2, for
B � a2 which holds up to melting. One finds:

Cv�T� � Ceq � AT=�1 � T=�2T���3; (12)

A �
�

128
c2
L

�
�2

0

c66c44a
4

�
sa2

r6
fTm

: (13)

The maximum occurs for B� � r2
f and thus T � T� �

Tmr
2
f=�c

2
La

2�, i.e., the so-called depinning temperature
[5], which can be below melting. The amplitude A (and
large T tail) is independent of the detailed form of V̂V�B�
and is strongly enhanced by the anisotropy and dispersion
of c44. The value at the maximum is C�

v � Ceq �
8AT�=27. Using c44 � �0�2=a2, c66 � �0=�4a2� the cal-
culation of J2��� shows [31] that Rc > a holds for � <
�c � 4�3=2��r4

f=sa
3�. At this value of the disorder one

obtains A � c2
L=�Tmr

2
fa�� and C�

v � Ceq � 1=�a3�� (� <
1 the anisotropy parameter [5]). C�

v � Ceq should be
compared with the equipartition value, estimated as
Ceq � 1=�sa2�. These become comparable around the
dimensional crossover field B � Bcr such that s� a�.

The above classical contribution (12) will hold only
above the vorton Debye temperature TD

v , below which
quantum effects become important. TD

v depends on the
vortex mass, the Hall force, and the friction force, which
arise from the coupling of moving vortices with the
normal electrons bath in the presence of scattering.
Estimates for TD

v range [22] from 10�3Tc in dirty (fric-
tion dominated) materials to 10�1Tc in the superclean
limit (Hall dominated). There should thus exist a broad
regime of temperature and field where the Bragg glass is
stable and the result (12) holds.
117002-3
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To assess whether this contribution (12) is observable,
let us compare it with other terms linear in T in Cv. First
the normal electrons in the vortex core lead to [14]:

Cvcore�T� �
T

Tfk�2
f s

�
H
Hc2

�
�
; (14)

where Tf is the Fermi temperature of the normal metal,
� � 1 for s-wave superconductor [38] and � � 1=2 for
lines of nodes in the gap [15]. Given the large ratio
Tf=Tm � O�102� for, e.g., YBaCuO, one finds, comparing
Acore and Adis that the contribution from the cores can be
comparable or smaller than the one from the disorder.

There are other contributions from the vortex lattice as
well. The mean field specific heat [23] being Cmf �
�0T=�T

2
ca

2�, the ratio Adis=Amf � �c2
LaTc=�rfTm��

2 can
be large. We have also computed the contribution from
nonlinear elasticity of the VL. Performing, as in [39], an
expansion of the vortex interaction energyR
dz
P

ij�0K0f�Ri � Rj � ui�z� � uj�z��=#g, we obtain

Anl � '0�0a�4

�
c2
La

2

Tm

�
2


54 � 53

							
c44

p
c66

�
c2
La

2

Tm

�
�0

a

�

(15)

up to O��a=#�2� where the numerical prefactors 54 and 53

are complicated lattice sums, given in [31]. One can then
estimate Anl=Adis � r2

f=a
2 and this contribution is likely

to remain small until melting. None of these contributions
[40] is expected to exhibit a maximum at scale distinct
from Tm.

To conclude, we found by explicit calculation that the
vortex lattice classical contribution to Cv due to disorder
can be important at the very least in the range 10�1Tc to
Tm, and possibly more. The coefficient Adis of the low T
linear behavior is magnetic field dependent, Adis /
1=�Tma�. It is convenient to express results using the
melting temperature Tm, which is experimentally mea-
sured [24,25,27] and can also be estimated from the
standard elastic expression of Tm � 4a3 													

c66c44
p

c2
L allow-

ing to extract directly the magnetic field dependence.
Tm � 1=

				
B

p
leads to T� /

				
B

p
and Adis / B. Cv�T� exhib-

its, as compared to other contributions, a distinct maxi-
mum around the depinning temperature scale, whenever
smaller than melting. A crude estimate of T� is T� ’
TmB=�c2

LHc2�, which for a typical cL � 0:12 gives a T�

which is a fraction of Tm for fields of about a Tesla (a
fraction of order unity for YBaCuO around B ’ 10 T the
so-called tricritical point [27]). It would be very interest-
ing to perform precise measurements of Cv to check the
present proposal.

We thank T. Klein, P. Monceau, A. Junot, and C. M.
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