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The properties of [Pb(Zr,_,, Ti, )Os],/[Pb(Zr,_,,Ti, )Os], superlattices, with a 2n period, are
simulated using an ab initio based approach. The x; and x, compositions are chosen to be located
across the morphotropic phase boundary of the corresponding disordered alloys, while the (x; + x,)/2
average composition lies inside this boundary. These superlattices exhibit an unusual thermodynamic
phase transition sequence, including a triclinic ground state. They also have the kind of peculiar free-
energy landscape yielding nonergodicity. The effects responsible for these anomalies are discussed.
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Ferroelectric heterostructures are of increasing tech-
nological interest because of their potential applications
in advanced microsystems [1]. A particular type of het-
erostructure that has received recent attention is formed
by superlattices, i.e., by compounds consisting of alter-
nating layers made from different materials [2]. The prop-
erties of ferroelectric superlattices can be very different
from those of their constituents, as a result of the complex
nanostructure of these multilayer systems [3].

Another (currently unrelated) activity is taking place
in ferroelectrics, namely, the investigation of the mor-
photropic phase boundary (MPB) of perovskite alloys [4].
This boundary was previously thought to discontinuously
separate compositional regions of tetragonal and rhom-
bohedral symmetry, for which the electrical polarization
lies along a (001) and a (111) pseudocubic direction,
respectively. The discovery of a monoclinic M, phase
in the MPB of Pb(Zr,_,Ti,)O; (PZT) solid solutions has
drastically changed this picture [5]. [The notation for
monoclinic phases is that of Ref. [6].] As a matter of
fact, this M, phase acts as a structural bridge between
the tetragonal and rhombohedral phases, in the sense that
the polarization in the M, phase rotates between the
pseudocubic (001) and (111) directions, as the Ti compo-
sition decreases within the MPB [7].

Independently of the two activities mentioned above,
another research field is being intensively pursued. This
field is the study of nonergodic systems, which are sys-
tems exhibiting properties that do not obey the usual
Gibbs equilibrium statistical mechanics. Nonergodicity
has been found in very diverse compounds, e.g., spin and
structural glasses, granular systems, etc. [8]. Examples of
observed behaviors associated with nonergodicity are an
anomalous time dependency of macroscopic properties
and/or a drastic dependency of such properties with ther-
mal history [9]. The existence of various energetic min-
ima that are separated by large barriers can drive a system
to be nonergodic [10]. As a matter of fact, such a free-
energy landscape can trap the system—for a long time at
the experimental scale—in a particular valley, even if
this valley is not the deepest one in energy. Consequently,
the properties of such systems cannot be described by the
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Gibbs statistical averaging but rather require the use of
new formalisms—e.g., the Edwards model—only in-
volving the “blocked” configurations [10].

The aim of this Letter is twofold. First, we report that
there is an unexplored class of ferroelectric superlattices
that has unusual thermodynamic properties. This class is
made by alternating layers of alloys having compositions
lying just across their MPB. Second, we also predict that
such layered systems can display nonergodicity.

More precisely, we theoretically investigate
[Pb(Zr,_, Ti, )Os],/[Pb(Zr,_,, Ti, )Os],  superlattices
having (i) a 2n period, (ii) x; and x, compositions lying
in the rhombohedral and tetragonal regions located just
across the MPB of disordered PZT, and (iii) a (x; + x,)/2
average composition yielding a monoclinic M, phase in
this MPB. These superlattices are chosen to be oriented
along the [001] direction (see Fig. 1) and are denoted as
(nPZTx,/nPZTx,). Note that Ti and Zr atoms are
randomly distributed within each (001) B plane under
the constraint of fixed (x; or x,) composition. We use
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FIG. 1. Schematic illustration of the studied superlattices. n
layers of PZT with a x; Ti concentration alternate with n layers
of PZT with a x, Ti composition. The arrows indicate the strain
field induced by the Ti and Zr size difference.
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the first-principles-derived effective Hamiltonian to in-
vestigate finite-temperature properties of these superlat-
tices. This approach has been successfully applied to

different complex problems [11] and, in particular, has
confirmed the presence of a M4 phase in the 7 — x phase
diagram of disordered Pb(Zr;_,Ti,)O; alloys [7]. The
energy of this alloy effective Hamiltonian is given by [7]

H {ut v} ma, {(Tj}) = Hye({u} {vi}, my) + Z[Aa(ai)u? + Ay(a—i)(”%x”%y + uizyulzz + ulzzuizx)]

1
+ D [Ry-ifji - vi + Qjj-ieji - wilo,
i

where the sum over i runs over all the unit cells, while the
sum over j runs over the mixed sublattice sites. u; is
the (B-site-centered) local soft mode in unit cell i, {v,}
are the (A-site-centered) dimensionless local displace-
ments that are related to the inhomogeneous strain inside
each cell [12], ny is the homogeneous strain tensor, and
o; is defined to be +1 (respectively, —1) if site j is
occupied by a Zr (respectively, Ti) atom. H,, gathers
five different kinds of energetic terms, for the PZT alloys,
as mimicked by the so-called virtual crystal alloy ap-
proximation [7]: a local-mode self-energy, a long-range
dipole-dipole interaction, a short-range interaction be-
tween soft modes, an elastic energy, and an interaction
between the local modes and local strain [7,12]. f}; (re-
spectively, e ;) is a unit vector joining the B site j to the
origin of v; (respectively, u;). The Rj;_; and Q);—; pa-
rameters are related to alloying-induced intersite inter-
actions, while A« and Ay characterize the on-site
contribution of alloying [7]. All the parameters entering
Eq. (1) are derived from first-principles calculations. The
total energy of the effective Hamiltonian is used in
Monte Carlo (MC) simulations on large supercells—
typically containing between 5000 and 40 000 atoms—
mimicking the studied structures. 2 X 10* MC sweeps are
first performed to equilibrate the system, and then 2 X
10* sweeps are used to get statistical averages. The out-
puts of the MC procedure are the local-mode vectors—
whose supercell average is directly proportional to the
macroscopic polarization—and the homogeneous strain
tensor—which provides information about the crystallo-
graphic system.

Note that the x-, y-, and z axes are chosen along the
pseudocubic [100], [010], and [001] directions, respec-
tively. In other words, the z axis lies along the growth
direction of the superlattices (see Fig. 1). Figure 2 shows
the predicted x-, y-, and z-Cartesian coordinates (u,, u,,
and u,) of the local-mode vectors—averaged over all
five-atom cells in our supercell—in (nPZT0.44/
nPZT0.52), as a function of the temperature. Fig-
ures 2(a) and 2(b) correspond to a superlattice period
associated with n = 1 and n = 6, respectively. The tem-
perature is decreased in small steps in order to reach
equilibrium. The PZT superlattice indexed by n = 1 ex-
hibits a paraelectric state at high temperature, since u,,
u,, and u, are all null. This paraelectric state is tetragonal
with a 4/mmm point group, rather than cubic, because of
the atomic ordering existing along the [001] pseudocubic
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direction. As the temperature decreases, the
(1IPZT0.44/1PZT0.52) superlattice undergoes two phase
transitions: the first transition occurs at 7 = 640 K, re-
sulting in a 2mm orthorhombic ferroelectric structure.
This phase is characterized by a nonzero component of
the polarization along a Cartesian axis that is perpen-
dicular to the [001] direction (e.g., along the x axis). Then
around T = 200 K, there is a second transition towards
another ferroelectric phase for which u, > u, = u, # 0.
This phase is triclinic [13]. To our knowledge, this is the
first time that a triclinic ground state has been predicted
to occur in the MPB area of any perovskite alloy, without
applying an external electric field [14].

Interestingly, the temperature dependency of the local
modes displayed in Fig. 2(a) is the same as in the
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FIG. 2. (uy, u,, u;) Cartesian coordinates of the local-mode
vectors, averaged over all five-atom cells, as a function of
temperature for (nPZT0.44/nPZT0.52) superlattices (as mim-
icked by 12 X 12 X 12 supercells). (a) and (b) correspond to
n =1 and n = 6, respectively. The temperature has been re-
scaled as in Ref. [7]. T, O, and M refer to tetragonal,
orthorhombic, and monoclinic phases, respectively. Tr; and
Tr, are two different triclinic phases.
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disordered PZT having the same overall composition of
48% [15]. However, unlike in the studied superlattices
for which the z axis is different by symmetry from the
other two axes because of the atomic ordering, the ran-
dom PZT alloy does not have any distinct Cartesian
direction. The phase transition sequence in the disordered
alloy is thus paraelectric (m3m) cubic — ferroelectric
(4mm) tetragonal — ferroelectric (m) M, monoclinic,
rather than vparaelectric (4/mmm) tetragonal —
ferroelectric (2mm) orthorhombic — ferroelectric (1) tri-
clinic as in the n = 1 superlattice.

Moreover, comparing Figs. 2(a) and 2(b) clearly dem-
onstrates that increasing the periodicity of the superlat-
tices drastically affects the phase transition sequence. In
particular, one can notice that (6PZT0.44/6PZT0.52) dif-
fers from (1PZTO0.44/1PZT0.52) by the existence of an
additional structure thermally located in between the
orthorhombic and triclinic phases. This additional phase
is characterized by u, > u,, # 0 and u, = 0 and is thus of
monoclinic M symmetry [16]. Another striking differ-
ence between the two superlattices concerns the triclinic
state: increasing n from 1 to 6 leads to a splitting of the
two smallest Cartesian components of the polarization;
namely, it yields u, > u, > u, > 0. The smallest compo-
nent of the polarization in this triclinic ground state is
thus along the ordering z direction, while, for symmetry
reasons, the largest component of the polarization can be
parallel (or antiparallel) to either the x axis—as found
here—or the y axis. This results in a triclinic ground state
that is 16-times degenerated.

Our calculations further predict that any studied
(nPZTx,/nPZTx,) superlattice exhibits another mini-
mum at low temperatures, in addition to the triclinic state.
This minimum is a secondary minimum and is charac-
terized by u, > u, = u, # 0. The resulting phase is thus
monoclinic M, and is 8-times degenerated since the
largest component of the polarization is along the order-
ing z axis. Figure 3 displays the 5 K internal energy—
with respect to the paraelectric state—of both the global
triclinic minimum and the secondary M, minimum as a
function of n for (nPZTx,/nPZTx,) superlattices with
two different (x, x,) combinations. These two minima
are rather deep in energy (around =~ 84-86 meV/5 atoms)
and are thus separated by large energetic barriers. This
explains why we further find that the studied superlattices
can be trapped in the secondary minimum (rather than
desiring to go to the global minimum), when rapidly
annealing the samples, or when applying and then re-
moving an electric field (or a stress) along the [001]
direction starting from the triclinic state. The existence
of a multiwell and blocked-configuration free-energy
landscape should drive nonergodicity in the (nPZTx,/
nPZTx,) superlattices. We can imagine a nonergodic evo-
lution for which the system will be distributed over the
two different kinds of minima. Such a redistribution can
increase the Edwards entropy [10] which characterizes
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FIG. 3. Energy of the local M, (white symbols) and
global triclinic minima (black symbols) as a function of n
in  (nPZT0.44/nPZT0.52) (circles) and (nPZT0.46/
nPZTO0.50) (triangles) superlattices, at 5 K. The star denotes

the total energy of the M, ground state in disordered
szro_szTi()AgO?, alloys.

the disorder in the distribution of states of a nonergodic
system over internal-energy minima. In this case,
the evolution of the system is described by the time-
dependent probability distribution over these minima.
This dependency can be found by solving the Fokker-
Planck equation, which is a very tedious task [17]. The
predicted nonergodicity can be experimentally confirmed
by looking at, for instance, nonmonotonic variations in
the time evolution of x-ray diffraction patterns [18].

Figure 3 also reveals that the low-temperature mono-
clinic and triclinic phases are very close to each other in
energy, typically less than 1 meV per five atoms, in any
studied (nPZTx,/nPZTx,) system. This small energetic
difference implies that several effects may change the
symmetry of the ground state, that is, from triclinic to
monoclinic My, or vice versa. Examples of such effects
are compressive or tensile strain induced by a substrate,
uniaxial or hydrostatic pressure, application of an electric
field, and zero-point quantum vibrations.

We now look for the mechanisms responsible for the
anomalous properties reported above. For that, we first
take into account that the ground state of disordered PZT
solid solutions with 48% Ti concentration is monoclinic
M. 1t is thus characterized by u; > u, = u; # 0, with
(u3, up, u;) being the largest, middle, and smallest
Cartesian components of the local modes. This set of
inequalities, if still satisfied in our studied layered sys-
tems, gives rise to two different structural phases in
(nPZTx,/nPZTx,;). One phase corresponds to the situ-
ation for which u; = u_, that is, the largest component
of the polarization is along the z axis. This solution is the
secondary minimum of M, symmetry that we found in
(nPZTx,/nPZTx,). The second possibility corresponds to
the case in which the largest component of the mode is
along an axis perpendicular to the z direction, e.g.,
(us, uy, uy) = (uy, Uy, u.). This results in the triclinic
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ground state of (nPZTx,;/nPZTx,) with n = 1. This
simple symmetry argument thus explains the existence
of the two different minima. However, it is unable to
explain why there is a splitting between the intermediate
and smallest components of the polarization, and why
this smallest component is along the ordering direction,
for n larger than 1. To understand these effects, we per-
formed different simulations, turning off and on the R);_;
and Q);—; parameters of Eq. (1). We numerically found
that the splitting between u, and u, and the fact that u; =
u,, is mainly caused by the R|;_; parameter, which is
related to the difference in ionic radius between Ti**
(0.605 A) and Zr** (0.72 A) [19]. This size difference
generates an inhomogeneous strain field that is oriented
along the [001] direction in one of the interfaces while it
is along the opposite [001] direction at the other interface
(see Fig. 1). These opposite strain fields, altogether with
the coupling between local modes and strain, result in the
reduction of the z component of the local mode with
respect to its intermediate component u,. This explains
the characteristics of the triclinic phase—as well as the
existence of the M. phase for which u, > u, # 0 and
u, = 0, and occurring at higher temperature—depicted
in Fig. 2(b).

In summary, we have used a first-principles-derived
approach to study properties of short-period (nPZTx,/
nPZTx,) superlattices, for which the x; and x, composi-
tions are located across the MPB of disordered PZT while
the (x; + x,)/2 average composition lies inside this MPB.
These superlattices exhibit a thermodynamic phase tran-
sition sequence that is different—by the number of
phases as well as by the symmetry of these phases—
from the corresponding sequence in the random PZT
alloy having the same overall composition. In particular,
the ground state of the superlattices is found to be tri-
clinic. Moreover, (nPZTx;/nPZTx,) systems also have
(deep) local minima of monoclinic M, symmetry that
are very close in energy from the global triclinic minima.
This multivalley configuration can generate a nonergodic
behavior. Furthermore, we revealed the mechanisms re-
sponsible for these unusual features. Finally, let us point
out that the studied superlattices also exhibit interesting
electromechanical responses. For instance, the existence
of the triclinic ground state depicted in Fig. 2(b) leads
to an enhancement of the y;; dielectric susceptibility
(= 1800 for n = 10) with respect to the disordered alloy
having the same overall Ti composition ( = 1500 for 48%
of Ti).
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