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Three-Particle Correlations in Simple Liquids
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We use videomicroscopy to follow the phase-space trajectory of a two-dimensional colloidal model
liquid and calculate three-point correlation functions from the measured particle configurations.
Approaching the fluid-solid transition by increasing the strength of the pair-interaction potential,
one observes the gradual formation of a crystal-like local order due to triplet correlations, while being
still deep inside the fluid phase. Furthermore, we show that in a strongly interacting system the Born-
Green equation can be satisfied only with the full triplet correlation function but not with three-
body distribution functions obtained from superposing pair correlations (Kirkwood superposition
approximation).
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FIG. 1. A typical image (500� 380 
m) of our two-
dimensional colloidal model system with paramagnetic col-
loids of d � 4:7 
m diameter. The particles interact via a
potential ��=r3 in which the interaction strength � can be
have been carried out as described in [15]: Spherical conveniently varied through the external magnetic field.
Our current understanding of the structure of simple
fluids is based on the n-body distribution functions g�n�,
measuring the probability density of finding two, three,
and more particles at specified positions in space. When
the total potential energy of a liquid is given by a sum of
pair potentials, all of its thermodynamic properties can
be calculated by means of the pair-correlation function
g�r� � g�2��r� and its density (�) and temperature (T)
derivatives. However, the latter two quantities, @g�r�=@�
and @g�r�=@T, explicitly depend on the triplet correlation
function, even if the particle interactions are only pair-
wise additive [1]. Explicit knowledge of triplet correla-
tions is also required in perturbation theories for static
fluid properties [2], in theories of transport properties [3],
of solvent reorganization processes around solutes [4], of
systems under shear flow [5], but also to understand the
structural properties of a 2D amorphous system [6]. Most
of our knowledge on triplet correlations come from com-
puter simulation studies of hard-sphere fluids [7],
Lennard-Jones fluids [8,9], and electrolyte systems [10].
In the overwhelming majority, these papers are concerned
with testing Kirkwood’s superposition approximation
(KSA) [11] for the triplet distribution function. By con-
trast, semianalytical theories for g�3� beyond the KSA are
rather rare [9,12]. However, despite the long-standing
theoretical interest in its properties, it has never been
possible to measure three-particle correlations directly.
Indirect ways to identify higher-order correlations in
scattering data have been suggested for instance in [13].
An alternative, but also indirect way to obtain experi-
mental information on g�3� is based on the relationship
between the isothermal pressure derivative of the fluid
structure factor @S�q�=@P and the triplet distribution
function [1], a relationship which has been systematically
exploited by Egelstaff and co-workers in rare-gas systems
[14]. The present Letter reports on the first direct mea-
surement of g�3� in a two-dimensional colloidal model
liquid with well-defined pair-interaction potentials.

The preparation of the samples and the experiments
0031-9007=03=91(11)=115502(4)$20.00 
colloids (diameter d � 4:7 
m) are confined by gravity
to a water/air interface whose flatness can be controlled
within less than a micron. The field of view has a size of
520� 440 
m containing typically about 103 particles.
The particles are superparamagnetic due to Fe2O3 dop-
ing. A magnetic field B applied perpendicular to the air/
water interface induces in each particle a magnetic mo-
ment M � �B, which leads to a repulsive dipole-dipole
pair-interaction energy of �u�r� � �=�

�������
��

p
r�3 with the

interaction strength given by � � ��
0=4����B�
2 �

����3=2 (� � 1=kT is the inverse temperature; � is the
susceptibility). This is the only relevant contribution to
the interparticle potential which is hence conveniently
and reversibly adjustable by the external field B. A typical
snapshot of our system is given in Fig. 1. � is the only
parameter determining the phase behavior of the system:
for �< 57 the system is liquid, for � > 60 it is solid, and
in between, i.e., for 57< �< 60, it shows a hexatic phase
[15]. We here analyze three different � (� � 4; 14; 46),
where the system is deep in the liquid phase, and use for
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each (well equilibrated) system about 200 statistically
independent configurations with approximately 500
particles, recorded using digital videomicroscopy with
subsequent image processing on the computer. From
the measured particle configurations, g�3� is obtained by
computing the average count per configuration of a par-
ticular kind of triplet, divided then by the appropriate
normalizing factor. Details of this calculation will be
given elsewhere [16].

Triplet correlations can be characterized by the ratio
between the full triplet distribution function g�3� and its
approximated form based on the KSA g�3�SA � g�r1� �
g�r2�g�r3�. This ratio is given by what is called the triplet
correlation function, denoted here by G�r1; r2; r3�. Thus,
g�3� � g�3�SAG. All pair correlations in g�3� are included in
g�3�SA, while the extent of the intrinsic correlations due to
the simultaneous presence of a triplet of particles at
positions r1, r2, r3 is quantified through the function G,
which thus defines the local structure of the fluid beyond
that expressed by the pair-correlation functions. Intro-
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FIG. 2. Triplet distribution functions g�3� as a function of the
side length of an equilateral triangle, as computed from mea-
sured particle configurations for different �. g�3�SA is the triplet
distribution function in the Kirkwood superposition approxi-

mation which on taking the cubic root,
����������������������
g�3�SA�r; r; r�

3

q
, becomes

the radial distribution function g�r�.
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ducing �w�m� � � lng�m�, g�3� � g�3�SAG transforms into

w�3��r1; r2; r3� � w�2��r1� 	 w�2��r2� 	 w�2��r3� � lnG=�

(1)

with w�2� and w�3� being the two- and the three-particle
potential of mean force, respectively. The equation shows
that � lnG � ��w�3� plays the role of a three-body po-
tential, measuring the (extra correlation) energy of three
correlated particles relative to the energy of superposed
correlated pairs of particles.

In a homogeneous, isotropic system, g�3� depends on
only three independent variables, chosen here to be r �
jr1 � r2j, s � jr2 � r3j, and t � jr1 � r3j. Figure 2
shows three-particle distribution functions in the equi-
lateral triangle geometry for all three �’s considered. To
allow comparison with the radial distribution function

g�r� we have taken the cubic root
����������������������
g�3��r; r; r�3

q
so that����������������������

g�3�SA�r; r; r�
3

q
� g�r�. It is evident that the KSA, while

working satisfactorily at low �, fails to reproduce the
fine structure of the triplet distribution function at higher
values of �. Obviously, correlations beyond the level of
pair correlations become important at higher �. To visu-
alize g�3� in two dimensions, r is fixed in the following to
the distance r�2�max where g�r� has its first peak (� 1=

����
�

p
),

so that g�3��r�2�max; s; t� varies just with s � s�x; y� and t �
t�x; y� and can thus be plotted in the �x; y� plane in the
form of a contour plot. This is done in Fig. 3 for the � �
46 measurement.We show in the left half of the figure g�3�SA
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FIG. 3. Distribution functions g�3��r � r�2�max; s�x; y�; t�x; y��
(right half of the figure) and g�3�SA�r � r�2�max; s�x; y�; t�x; y�� (left
half of the figure) in the �x; y� plane (� � 46). The missing half
of each distribution is just the mirror image of the one actually
plotted. The constant g�r�2�max� is subtracted from the distribu-
tions and only positive values are plotted with a grey-level
scheme between white (zero) and black (max. value).
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and contrast it to the full three-particle distribution func-
tion g�3�, plotted in the right half of the figure. g�3�

approaches g�r�2�max� for large values of x2 	 y2. To keep
the figure as clear as possible, we plotted just those parts
of g�3� � g�r�2�max� and g�3�SA � g�r�2�max� that are larger than
zero. The stripes that can be seen especially close to the x
axis result from the transformation g�3��rmax; s; t� to
g�3��rmax; x; y� and appear due to limited statistics. A
hexagonal lattice with a lattice constant a � r�2�max is
superposed. Both distributions g�3� and g�3�SA reveal that
the neighbors of the two central particles have positions
which show a certain correspondence to the crystalline
lattice points. However, while the bananalike structure of
g�3�SA reflects just the coordination shells of the lattice, the
full distribution function g�3� shows a well-developed,
angular dependent substructure, with individual peaks
for every lattice point in the first coordination shell.
Figure 4 shows g�3� and g�3�SA of Fig. 3 along the line �r �
r�2�max; s � r�2�max; t � t� ��, which is a circle of radius r�2�max

around the right particle in Fig. 3, passing through all
lattice points of the particle’s first coordination shell
(arrows in Fig. 4 mark positions of lattice points). It
can be clearly seen that g�3� develops peaks at the lattice
points while g�3�SA completely fails to reflect the hexagonal
structure. Also given is the function � lnG, i.e., �w�3�, of
Eq. (1), now for all three values of � studied here. It is
evident how �w�3� gradually forms on increasing �, with
values up to 1kT [in other regions of the �r; s; t� space we
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FIG. 4. g�3� and g�3�SA from Fig. 3 for fixed values of r � r�2�max

and s � r�2�max, as a function of the angle  (see the inset).
Symbols (solid lines) for distributions generated from mea-
sured (MC-simulated) configurations. Also given is the loga-
rithm of the triplet correlation function G, which is related to
the triplet correlation energy �w�3�, for � � 4 (dashed line),
� � 14 (dash-dotted line), and � � 46 (dashed line).
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find energies as high as 4kT]. It is also seen that the
regions of attractive and repulsive correlation energies
�w�3� correspond to the correcting effect which the func-
tion G has on g�3�SA to ensure that g�3� adapts locally to the
hexagonal symmetry. We conclude that it is an effect
entirely due to three-particle correlations, i.e., due to
the function G, which is responsible for the observed
formation of a crystal-like local environment around
particles well below the freezing transition. We also per-
formed Monte Carlo (MC) simulations using the above-
given pair potential �u�r� � �=�

�������
��

p
r�3 (with a better

statistic than in the experiment: 500 configurations with
2000 particles, periodic boundary conditions). The al-
most perfect agreement between the distribution func-
tions based on the MC data (solid lines in Fig. 4) and
on the experimental configurations (symbols in Fig. 4)
demonstrates that our model liquid consists of particles
interacting solely via pairwise additive and precisely
known potentials.

Furthermore, we carried out MC simulations for the
solid phase (� � 80), starting from a perfect hexagonal
lattice, and compared the resulting triplet distribution
function with the experimental one for the � � 46 mea-
surement in the liquid phase; see [16]. The distributions
look quite similar: as regards the correlations between the
central pair and the first coordination shell (in a plot like
that in Fig. 3), there is hardly any difference between the
liquid and the solid phase. Pronounced differences are
observable, however, in the second shell: in the liquid
phase the next nearest neighbors are broadly distributed
midway between adjacent lattice nodes (see Fig. 3), while
the � � 80 distribution correlates much better with the
lattice structure. However, even for � � 80 this corre-
spondence is far from perfect; it is well developed along
the y direction, but becomes worse on increasing  to
180� where there is still an extended smeared-out distri-
bution showing no clear preference for certain lattice
points. Clearly, approaching T ! 0 (� ! 1), one ulti-
mately observes peaks in g�3� positioned exclusively on
the lattice points. We should remark that in three dimen-
sions a similar correspondence between the peaks in g�3�

and an underlying crystal lattice should be much harder to
find. In 3D, every triplet of particle lies, of course, also in
a plane, and can accordingly be plotted as in Fig. 3.
However, then there is not one but a superposition of
many possible lattice planes with which one has to com-
pare this distribution.

To demonstrate that triplet correlations are significant
not only locally, but also when integrated over the whole
volume, we consider the Born-Green equation [17],

@w�2��r12�
@r1

�
@u�r12�
@r1

� �
Z @u�r13�

@r1

g�3��r1; r2; r3�
g�r12�

dr3;

(2)

relating the difference between the mean force and the
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FIG. 5. Test of Kirkwood’s approximation using experimen-
tally determined three-particle distribution functions (� � 46
and � � 4). Solid lines for the left-hand side of the Born-Green
equation [Eq. (2)], symbols for the right-hand side, evaluated
using the full triplet distribution function g�3� (crosses), and the
distribution function g�3�SA (open circles) which is based on
Kirkwood’s superposition approximation.
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direct pair force to an integral over the force on par-
ticle 1 due to a third particle at r3, weighted by the
probability �g�3�dr3=g�r12� of finding this particle in
dr3 at r3 when it is known that other particles are located
at r1 and r2. This equation is exact if pairwise inter-
actions can be assumed. To illustrate the importance of
three-particle correlations, we numerically computed the
right-hand side (rhs) of Eq. (2) using both the full and the
approximated triplet distribution function, g�3� and g�3�SA,
of the � � 4 and � � 46 measurement and compared it in
Fig. 5 to the left-hand side (lhs) of Eq. (2), evaluated
using u�r� and g�r�. For the strongly interacting system
(� � 46) the KSA fails completely. Three-particle corre-
lations are thus seen to be important not only to obtain
locally the correct structure, but also to obtain globally
the correct difference between mean and direct force via
the Born-Green equation.

We are grateful to Gerd Haller for providing the pho-
tograph of the sample in Fig. 1.
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