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Localized Transverse Bursts in Inclined Layer Convection
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We investigate a novel bursting state in inclined layer thermal convection in which convection rolls
exhibit intermittent, localized, transverse bursts. With increasing temperature difference, the bursts
increase in duration and number while exhibiting a characteristic wave number, magnitude, and size. We
propose a mechanism which describes the duration of the observed bursting intervals and compare our

results to bursting processes in other systems.
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Bursting phenomena, in which the amplitude of a non-
linear state rapidly increases and then decays, are com-
mon to nonequilibrium systems as diverse as neuronal
firing [1], lasers [2], and solar cycles [3]. In the case of
fluid systems, bursting has been observed in Taylor-
Couette flow [4], binary fluid convection [5], and shear
flow through pipes, in which it is essential to the under-
standing of the transition to turbulence. Models have been
developed which rely on non-normal, linear interactions
and nonlinear interactions [6]. However, the choice
among the different mechanisms underlying intermittent
bursting is still unresolved. Furthermore, bursting is usu-
ally addressed within a dynamical systems approach [7],
which does not allow the treatment of bursts that are
spatially localized.

In this Letter, we report data on spatially localized
bursts in an experimental system, namely, inclined layer
convection (ILC) [8], for which the experimental condi-
tions are exceptionally well controlled. ILC lends itself
well to detailed study: Bursts appear very close to the
onset of convection, grow from an initial instability, and
the spatiotemporal dynamics can be quantified. Our data
show many interesting and unexplained properties across
a range of parameters: spatial localization, transverse
instability, weak persistence of the linear instability
while bursting, and repeated cycles of growth and decay.
These experimental observations need a theoretical de-
scription that in turn may lead to a better understanding
of general mechanisms for bursting in nonequilibrium
systems.

Inclined layer convection is a variant of Rayleigh-
Bénard (thermal) convection [9], in which a fluid layer
is heated from one side and cooled from the other. Tilting
this layer by an angle 6 results in a base state which is a
superposition of a linear temperature gradient and a shear
flow up along the hot plate and down along the cold. When
heated beyond a critical temperature difference AT, the
fluid convects due to the buoyancy of the hot fluid. As 6 is
increased, the buoyancy provided by the perpendicular
component of gravity g, = gcosf becomes weaker and
the shear flow provided by g|| becomes stronger. Above a
codimension-two point at ., the primary instability is
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due to this shear flow instead of buoyancy [10].
Interesting bursting behavior (see Fig. 1) has been ob-
served in the vicinity of this codimension-two point [8].

We perform experiments in high pressure CO, in an ap-
paratus similar to that described in [12], modified to al-
low for inclination. The gas was at a pressure of (48.26 =
0.01) bar regulated to +0.005 bar with a mean tempera-
ture of (25.00 £ 0.05) °C regulated to +0.3 mK. Our three
convection cells were of height d=778 =2 um and
length 97.3d. The widths in the X direction are L, =
10.4d for cell 1, L, = 20.9d for cell 2, and L; = 31.0d
for cell 3. These parameters give a vertical viscous dif-
fusion time of 7, = d?/v = (4.50 + 0.02) s, a Prandtl
number o = 1.301 = 0.001, and weakly non-Boussinesq
conditions (Q = 0.2 to 0.8, as described in [9]). The plan-
form of the convection pattern was observed via the
shadowgraph technique [12] using a digital camera. The
two control parameters are the angle 6 and the nondimen-
sionalized temperature difference €= (AT)/(AT,)— 1.
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FIG. 1. (a)—(d) Sequence of background-divided shadow-
graph images and associated contrast-enhanced power spectra
for cell 1 at § = 78° and € = 0.08: (a) quiescent, (b) modula-
tions during early bursting, (c) developed bursting, and (d) end
of burstlet. Times correspond to points marked in Fig. 3. Uphill
direction is at left. (e) Disordered bursting at § = 78° and € =
0.09. Also see movies in [11]. (f) Magnified power spectrum
showing three primary modes.
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FIG. 2. Phase diagram near the codimension-two point.
Stability curves are from [13]; solid lines are primary insta-
bilities and dashed lines are extensions. Shaded area corre-
sponds to region of data collection.

Images were collected at 27 frames/7, with runs of du-
ration at least 10007, at various values of €, 8 (see Fig. 2).

The localized transverse bursts appear just below the
codimension-two point at & = 79.9° [8]. These bursts are
triggered within a secondary instability in which there is
already local growth of regions of high-amplitude longi-
tudinal convection, as seen in the sequence of images in
Fig. 1; a movie of the corresponding images are available
online [11]. Within these regions, transverse modulations
repeatedly grow and decay, becoming highly disordered
in the process; this is accompanied by a noticeable shear-
ing of the roll spectra [see Fig. 1(c)]. Eventually, this cycle
of bursting ends and the system returns to quiescent,
weak longitudinal rolls. The phenomenon becomes more
pronounced at large €, so that eventually the whole cell is
bursting. Each localized patch does not spread and no
global bursting was observed. At lower inclination (fur-
ther from the codimension-two point) the bursting has a
less-uniform wave number and is less localized (see
Figs. 4 and 5), such that no sharp boundary is observed
between this flow regime and that of the crawling rolls
described in [8].

We describe the bursts based on the modes they excite
in Fourier space, using the power spectra of background-
divided images as a function of time. Sample spectra and
their corresponding shadowgraph images are shown in
Fig. 1, with three prominent modes: a pure X mode ¢
(strongest), a pure § mode p, and a mixed mode pg which
are in resonance with each other. The longitudinal rolls
are composed of the pure ¢ mode, while the transverse
modulations are constructed from the p and pg modes.
Higher-order modes serve to create the characteristic

shape of the bursts and will be ignored here. It should
be noted that the shadowgraph technique gives only a
two-dimensional image of the density field, integrating
through the fluid layer.

We define S, S, and S, as the power in each of these
three peaks, taken as the total intensity in a fixed region
of Fourier space. Figure 3(a) shows time traces of the
power in each of the three modes. Prior to the beginning
of each burst Sq increases in relative amplitude, as shown
in Fig. 3(b). The beginning of a burst is characterized by
the rapid growth of the transverse modulations (via § ).
Since a resonance condition is observed between the three
modes and the S, mode grows after a delay of about 0.57,,
it is possible that a nonlinearity between S, and S, is
responsible for the growth in S,.

The measured wave number p of the transverse modu-
lations is shown in Fig. 4 and observed to be approxi-
mately constant. Intriguingly, the observed wave number
falls just below the value p = p./2 (shown as a dashed
line) obtained from stable transverse rolls with wave
number p,. at @ = 80°. While the appearance of this
bursting phenomena close to the stability curve for trans-
verse rolls suggests that a related shear instability is play-
ing a role, experimental observations do not show a mode
subharmonic to p. in the bursting spectra (see Fig. 1).

Using Fourier decomposition, we determined the area
of each cell occupied by transverse bursting and found the
width of the region for those instances in which only a
single burst was present. As shown in Fig. 5, the bursts
generally have a characteristic width of 154 in the trans-
verse direction and length 20d in the longitudinal. Bursts
are smaller in cell 1 [see Fig. 5(a)], where they fill the cell
in the X (transverse) direction. They are larger both away
from the codimension-two point [Fig. 5(b)] and for in-
creased e [Fig. 5(c)], as shown exemplarily for cell 2.
Hereafter, the investigation of bursting dynamics has
been restricted to cell 1 since this cell is sufficiently
narrow to contain only single localized bursts, allowing
automated analysis. The behavior in cells 2 and 3 was
observed to be similar except for the presence of multiple
simultaneous bursts. For cells 1, 2, and 3 at 6§ = 78°, the
onset of bursting was observed to occur at € = 0.075, € =
0.02, and € = 0.04, respectively.

The time series in Fig. 3(a) shows two important tem-
poral features: (i) intermittent, alternating periods of
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FIG. 3. (a) Sample segment of S,(¢), S

rq
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(#), and S,(¢) at € = 0.08 and 6 = 78° in cell 1. Gray bars indicated bursting; time

intervals Tp, T, and 7, defined in text. Labeled black dots correspond to the images in Fig. 1. (b) Ensemble average (S(f — fy,y))
over all bursts where #,, is the rising edge of S, for each burst. Power is in same arbitrary units for both figures.
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FIG. 4. Wave number of transverse bursts p (determined from
power spectra) as a function of 6, €, and cell length L. In each
graph the wave number is plotted against the given variable,
and averaged over the other two. Dashed lines are p./2 for
pe. = (2.82 = 0.04)d at € = 0 (onset) and # = 80° (weak de-
pendence on 6).

quiescence and bursting and (ii) burstlets characterized by
peaks and troughs within the bursting intervals. As S, (1)
rises at the beginning of a burstlet, the pattern exhibits the
increasingly well-defined modulations shown in Fig. 1(b).
When §,, peaks, these modulations become spatially
disordered on short time scales, moving rapidly within
the underlying rolls. While the general roll pattern is
retained in any single image [see Figs. 1(c) and 1(d)],
the roll segments themselves move within the local-
ized bursting region [11]. At higher € and 6, both of which
increase the shear flow, this disorder is increased [see
Fig. 1(e)]. From the disordered state, the modula-
tions either decay—resulting in the end of the bursting
interval—or grow again, creating another burstlet
within the same interval. A succession of such events is
suggestive of the presence of a limit cycle. Stochastic
limit cycles have been previously described in [7,14],
relying on a random forcing effect such as pressure fluc-
tuations to produce random events with a single, well-
defined mean rate.
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FIG. 5. Burst width (X, gray) and length (¥, black) directions:
(a) vs cell width L at onset of bursting for § = 78°, (b) vs 6 at
onset of bursting in cell 2, and (c) vs € in cell 2 at 8 = 78°.
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To determine the quiescent and bursting intervals, we
set a threshold for §,,(¢) above which the system was
considered to be bursting. Because the onset and decay of
the burst was sharp, the results were not sensitive to the
choice of threshold over a reasonable range of values.
Using this information, we examined the duration of
quiescent intervals Ty, bursting intervals T. Burstlets
are separated by intervals 7, within the Ty, with burstlet
peaks identified by local maximum. Examples of the
determined bursting intervals are shown by the gray
bars at the bottom of Fig. 3(a). Sample probability distri-
bution functions (PDFs) and mean values as a function of
€ are plotted in Fig. 6. The quiescent intervals T, were
longest close to the onset of bursting, and decreased until
they were no longer detectable at higher €. Conversely, the
bursting intervals Tz grow with €. The combined effect is
that at high e the whole cell is in a perpetual state of
bursting since each localized burst lives longer and new
ones begin sooner. All of these trends hold at other values
of € and 6 as well.

It is interesting to compare the bursting in ILC with
that of Taylor-Couette flow, where similar behavior has
been observed [4]. In both systems, bursts appear to be
caused by a secondary instability whose growth above a
threshold triggers transient disorder. In Taylor-Couette
flow, once the turbulence has begun it destroys (some-
times globally) the underlying rolls which were feeding
it, and thus it dies away after a well-defined period of
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FIG. 6. (a),(b),(c) Sample PDFs of Ty, 7,, and N, respec-

tively, at € = 0.08 and § = 78°. (b) Dashed line is exponential
distribution fit to data excluding the first bin. (c) Dashed line is
Eq. (3) plotted from the measured mean. (d) Mean quiescent
period as a function of € at § = 78°. (e) Effective (from fit)
mean burstlet period and (f) mean number of burstlets and
mean bursting interval as a function of € at § = 78°.
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time. Contrarily, the bursts in ILC cause only local dis-
order and fail to globally trigger turbulence. Because the
modulation and rolls appear to be incompletely destroyed
[see Fig. 3(a)], they are able to grow back up again after
they decay; this may explain the presence of repeated
burstlets. As a result, the bursting interval Ty is not
constant as was observed for the Taylor-Couette bursts
but instead increases with €, as shown in Fig. 6(f). A
second similarity between the two systems is the trend
towards longer quiescent periods T, at lower € [see
Fig. 6(d)]. Quantitatively, Taylor-Couette bursts exhibit
(Ty) ~ 1/€ behavior based on a constant growth rate of
the secondary instability [4], but the nonconstant 7Tz may
destroy such a relationship here.

To create cycles of burstlets within each bursting in-
terval, a second mechanism is needed, possibly sensitive
to noise. At each € and 6, the PDF of 7, [see Fig. 6(b)]
exhibits a negative exponential distribution,

e_TI;/<TI;>
(Tp) ’

where (7,) is the mean waiting period of a Poisson pro-
cess generating the bursts. Because the lowest 7, bin is
underreported due to the finite sampling of the time
series, (7,)er is found instead by fitting the negative
exponential to all data except for the first bin.

This description can also explain why T is not con-
stant. In a Poisson process, the events are memoryless:
The wait time for the next event is independent of how
long the system has already been waiting. If a new burst-
let were not generated before the decay to quiescence, the
modulations would die away and the burst interval would
be over. Assuming a constant, unknown decay time 7,4,
the probability distribution for N burstlets for which each
7, 18 no more than 7, is calculated using the cumulative
distribution of Eq. (1), P(r, = 7,) = 1 — e~ /7,

P(ry) = ey

(1 — 3_711/<Tb>)N

PNy ==y —{

2)
This distribution contains a single parameter (N) =
e/{™) which can be measured directly from the experi-
mental P(N). Equation (2) then reduces to
(V) — V!

where (N) is the measured mean number of burstlets per
interval. This formulation allows for comparison with the
observed data with no fit parameters. Figure 6(c) shows
good agreement with this model, as do plots at other
parameter values. Therefore, our results are consistent
with the burstlets being Poisson-distributed events.

Transverse bursts in inclined layer convection show
many interesting and unexplained properties across a
range of parameters: spatial localization, transverse in-
stability, weak persistence of the linear instability while
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bursting, and repeated cycles of growth and decay once
triggered. Initial theoretical investigations [13] show that
a three-mode resonance cannot describe the bursting, and
it remains to be seen whether non-normal properties of
the system are important. This system is ideally suited for
theoretical progress as the instabilities occur very close to
the onset of convection and can also be characterized
through numerical simulations [15]. We hope that these
experiments will motivate theoretical studies which both
explain this very interesting phenomenon and lead to a
better understanding of the general properties of local-
ized bursting in nonequilibrium systems.
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