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Multigap DiscreteVector Solitons
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We analyze nonlinear collective effects in periodic systems with multigap transmission spectra such
as light in waveguide arrays or Bose-Einstein condensates in optical lattices. We reveal that the
interband interactions in nonlinear periodic structures can be efficiently managed by controlling their
geometry. We predict novel types of discrete vector solitons supported by nonlinear coupling between
different band gaps and study their stability.
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profiles are essentially discretized by the underlying pe-
riodic structure, strongly affecting the properties of dis-
crete solitons [8,9].

refractive index, Gmm � j�mjj j , where �m�j and
�m�j are the self- and cross-phase modulation coeffi-
cients, respectively.
Periodic structures are common in nature, with the
crystalline lattice being the most familiar example. One
of the important common features of such systems is
the existence of frequency gaps in the transmission spec-
tra which can dramatically alter both propagation and
localization of waves. Moreover, the modern technology
allows creating different structures with an artificial pe-
riodicity, and the recent examples are photonic crystals,
which can control propagation and emission of electro-
magnetic waves [1], and optical lattices, which are used to
trap and manipulate atomic Bose-Einstein condensates
(BECs) [2]. An unprecedented level of control over such
engineered structures can be realized by tailoring both
location and width of multiple band gaps with additional
modulation of the structure parameters. For example, it
has been shown that atomic BEC can demonstrate a rich
variety of phase transitions in optical superlattices [3],
and the reduced-symmetry photonic crystals allow self-
localization of waves in minigaps [4].

The response of many systems becomes nonlinear at
higher energy densities. This phenomenon may have vari-
ous physical origins, such as the charge recombination in
biased photorefractive crystals, excitation of higher en-
ergy levels in semiconductors, or atomic interaction in
BEC. In periodic media, nonlinearity produces a shift of
the band-gap spectrum, and this physical mechanism is
responsible for a number of remarkable effects, including
the formation of gap solitons [5]. Such nonlinear local-
ized modes can be excited within multiple spectral gaps
of a periodic structure, as was first demonstrated experi-
mentally for temporal optical pulses in fiber Bragg gra-
tings [6]. Since the pulses extend over hundreds of grating
periods, the gap-soliton dynamics is usually described by
averaged coupled-mode equations with constant coeffi-
cients [7]. In contrast, spatial optical beams in waveguide
arrays and matter waves in BEC can span over a few
periods of the structure. Under such conditions the wave
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Spatial optical solitons associated with the first (semi-
infinite) spectral gap of the multiband transmission spec-
trum have been extensively studied both theoretically and
experimentally in arrays of coupled optical waveguides
[8,9]. Very recently, spatial gap solitons localized in
higher-order bands have been observed as well [10]. A
similar observation of matter-wave gap solitons in BEC
loaded into an optical lattice is also expected. However,
the interaction properties of localized modes which be-
long to different gaps are not known. The existence of gap
solitons is directly related to the band-gap spectrum, and
the latter can be fine-tuned in superlattices. In this Letter,
we reveal, for the first time to our knowledge, the funda-
mental links between periodic modulation of the medium
parameters and nonlinear wave coupling between differ-
ent gaps, and we also predict the existence of multigap
discrete vector solitons with nontrivial symmetry and
stability properties, which differ significantly from con-
ventional discrete vector solitons [11]. We believe that our
results can stimulate and guide the future experiments in
optics and matter-wave physics.

Self-action and interaction of optical beams in a one-
dimensional periodic structure of coupled optical wave-
guides with the normalized refractive index profile
V�x� � V�x� h� can be described by a set of coupled
nonlinear Schrödinger equations,
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� V�x� �G� � � 0; (1)

where, in the case of optical waveguides, x and z are the
transverse and longitudinal coordinates, respectively, h is
the spatial period, and  � � �1�;  �2�; . . .�T are the nor-
malized electric field envelopes of several copropagating
beams having different polarizations or detuned
frequencies. It is assumed that the beams interact inco-
herently through the Kerr-type nonlinear change of theP
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FIG. 1 (color online). Examples of a binary superlattice
which can be created by (a) an array of two types of coupled
waveguides or (b) an optical superlattice induced by two over-
lapping mutually incoherent interference patterns.
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We note that the model (1) is equivalent to a system of
coupled Gross-Pitaevskii equations describing the dy-
namics of multicomponent BEC in 1D optical lattice,
where  �m� is the mean-field wave function for atoms in
the mth quantum state, z stands for time, V�x� is the
periodic potential of an optical lattice, and G is the
effective mean-field nonlinearity which appears due to
the s-wave atom interaction. Although below we use the
terminology from the guided wave optics, our results are
equally applicable to the nonlinear dynamics of BEC in
optical lattices.

Linear wave propagation through a periodic structure
can be entirely described by the Floquet-Bloch spectrum
of the eigenmode solutions of Eqs. (1) in the form  �
 b exp�i�z� iKbx=h�, where Kb is the normalized
Bloch-wave number and � is the propagation constant.
The Bloch-wave amplitudes decay exponentially when
ImKb��� � 0, and this condition defines the location of
gaps in the transmission spectrum. At the gap edges,
Kb � 0; �. Nonlinearity manifests itself through an ef-
fective change of the optical refractive index which re-
sults in a local shift of the bands and gaps. As we
demonstrate below, this physical mechanism is respon-
sible for the formation of multigap solitons.

Let us first consider small-amplitude solitons, so that
the band shifts are small. Then, we can seek solutions of
Eqs. (1) near the gap edges (� � �m) in the form
of modulated Bloch waves [12],  �m� � ’�m� �m�

b �
exp�i�mz� iK�m�

b x=h�, and derive a system of coupled
nonlinear Schrödinger equations for the slowly varying
envelopes,
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�mj�mjj’�j�j2’�m� � 0: (2)

Here D�m� � �h2@2�=@K2
bj�m are the effective diffrac-

tion coefficients, and �mj �
R
h
0 j 

�m�
b  �j�

b j2dx characterize
nonlinear coupling between different bands, where we
assume the normalization

R
h
0 j 

�m�
b j2dx � 1.

Model (2) is known to possess multicomponent soliton
solutions, and this proves the existence of multigap soli-
tons where every component is localized in a different
gap. It also follows that a soliton always supports multiple
guided modes in other band gaps. We note that the dif-
fraction coefficients D�m� are positive near the lower gap
edges, and negative at the upper edges [13], and, there-
fore, multigap solitons can contain both the bright and
dark components in the nonlinear media with either self-
focusing or self-defocusing nonlinearities. The simplified
model (2) predicts stability of bright vector solitons when
all �mj have the same sign [14].

We now demonstrate the unique properties of multigap
solitons which distinguish them from conventional vector
solitons. The soliton components are coupled together
through nonlinear interband interactions, and we show
below that this coupling can be enhanced or suppressed in
engineered superlattices. Moreover, we find that the non-
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linear coupling effectively depends on the soliton power
and width, and location of the soliton center with respect
to the periodic structure.

As an example, we consider a binary superlattice where
the effective periodic potential is composed of two types
(A and B) of separated individual potential wells, V�x� �P
n	VA�x� nh� � VB�x� nh�
, and �mj � �. Such super-

lattices can be produced by etching waveguides on top of
a AlGaAs substrate [15], or induced dynamically by two
overlapping mutually incoherent interference patterns in
a photorefractive medium [16]; see Figs. 1(a) and 1(b). In
order to analyze the properties of nonlinear waves of such
superlattices, we employ the tight-binding approximation
[17,18]. This approach allows us to describe correctly the
first two spectral bands, and the ‘‘superlattice’’ gap which
appears due to a difference between the A- and B-type
lattice sites, whereas the applicability of Eqs. (2) is
limited to small-amplitude solitons in the vicinity of
the gap edges. We present the total field as a superposition
of the guided modes supported by individual potential
wells ( A and  B),  �x; z� �

P
n	an�z� A�x� nh� �

bn�z� B�x� nh�
eIkz, where k is the average propagation
constant, and derive a normalized system of coupled
discrete equations for the mode amplitudes,

i
dan
dz

� �an � ��1bn�1 � �bn �  �a�janj2an � 0;

i
dbn
dz

� �bn � �an � ��1an�1 �  �b�jbnj2bn � 0:
(3)

Here, the key characteristics of the binary superlattice are
defined by free parameters: � is proportional to the de-
tuning between the propagation constants of the A- and
B-type guided modes, � characterizes the relative cou-
pling strength between the neighboring wells on the right-
and left-hand sides, and  �a;b� �  �

R
�1
�1 j A;Bj

4dx
(where  > 0) are the nonlinear coefficients.

According to Eqs. (3), the linear Bloch-wave disper-
sion is defined as Kb � cos�1��#=2�, where # � �2 �
��2 � �2 � �2. The transmission bands correspond to
real Kb, and they appear when �� � j�j � ��,
where �
 � ��2 � ��2 � �2 
 2�1=2. A characteristic
dispersion relation and the corresponding band-gap
113902-2
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structure are presented in Fig. 2(a). The upper gap at � >
�� is due to the effect of total internal reflection (IR),
whereas additional gaps appear due to the resonant Bragg
reflection (BR).

It is well known that the material dispersion can be
completely compensated by the geometrical dispersion in
optical fibers. More recently, diffraction management was
realized in periodic waveguide arrays [19]. The question
is whether it is possible to control nonlinear coupling
between the gaps by appropriate design of periodic struc-
tures. In order to answer this fundamental question, we
study the dependence of the nonlinear coupling coeffi-
cients on the superlattice parameter �, while preserving
exactly the same linear dispersion of Bloch waves. Our
results are presented in Fig. 2(b), and they uncover the
remarkable feature: nonlinear interband interaction coef-
ficients strongly depend on the symmetry of the periodic
structure, and this relation cannot be fully characterized
just by the linear Bloch-wave dispersion. Thus, by chang-
ing the superlattice parameters it is possible to selectively
enhance or suppress interband interaction, and this can be
used, in particular, to control the properties of multigap
solitons.

To be specific, we now consider the soliton formation in
a superlattice with symmetric intersite coupling (� � 1)
between wide (A) and narrow (B) waveguides in a self-
focusing medium. Such a lattice can support two funda-
mental types of one-component bright solitons centered
at either A or B sites, and these solitons exist in both the
IR and BR gaps described by model (3). We find that the
FIG. 2 (color online). (a) Characteristic dependence of the
Bloch wave number (Kb) on the propagation constant �.
Gray shadings mark the transmission bands. (b) Dependence
of the normalized nonlinear coupling coefficients [�mj �
ja�m�a�j�j2 � jb�m�b�j�j2, where fa; bg�m;j� are the Bloch-wave
solutions of Eq. (3), and it is assumed that  �a� ’  �b�] between
the gap edges �1 � �� and �2 � ��� vs the parameter �.
The values of �
 correspond to the plot (a) by a proper choice
of �. The insets show possible symmetries of superlattices
corresponding to different parameter values, but the same
linear dispersion.
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powers of A- and B-type solitons become significantly
different away from the band edges; see Fig. 3(a). The
solitons of type B in the IR gap are always unstable with
respect to a translational shift (symmetry breaking);
however, the stability is reversed for discrete gap solitons
in the first BR gap [left part of Fig. 3(a)] where type-A
solitons become unstable. Additionally, the discrete gap
solitons become oscillatory unstable above a critical
power due to (i) internal resonance within the gap, first
discovered for the fiber Bragg solitons [20], and (ii) inter-
band resonances, first found for nonlinear defect modes in
a periodic medium [21].

The mutual trapping of the modes localized in differ-
ent gaps and the physics of multigap vector solitons can be
understood in terms of the soliton-induced waveguides.
Therefore, the effect of discreteness on the intergap cou-
pling can be captured by studying the guided modes
supported by a scalar soliton in other gaps: the larger is
the eigenvalue shift from the band edge; the stronger is
the interaction. In Figs. 3(b) and 3(c), we plot the eigen-
values of the guided modes supported by the BR (gap)
and IR solitons and observe two remarkable features
which cannot be captured by the simplified envelope
approximation (2). First, the strength of the intergap
coupling depends strongly on the soliton symmetry. In-
deed, the type-B soliton always creates a stronger effec-
tive waveguide, despite the fact that the soliton power in
the BR gap is smaller compared to the type-A solitons.
Second, the nonlinear intergap coupling decreases for
strongly localized discrete solitons in the IR regime,
FIG. 3 (color online). (a) Power vs propagation constant for
discrete solitons centered at A (black) and B (gray) lattice sites.
Solid line: stable, dashed line: unstable, and dotted line:
oscillatory unstable modes. (b),(c) Eigenvalues of the guided
modes supported by the discrete solitons localized in the
complimentary gap. The insets show characteristic profiles of
solitons and their guided modes defined as u2n � an and
u2n�1 � bn. The array parameters are � � 0:75, � � 1, and
 �a;b� � 1
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FIG. 4 (color online). (a),(b) Powers in the IR (a) and BR
(b) components of the multigap discrete vector solitons vs
propagation constant �1 with �2 � 0:5� �1=3 for the families
with symmetric (AA) and asymmetric (AB) profiles. Dashed
lines mark solutions exhibiting symmetry-breaking instability.
Bottom: Characteristic profiles of the vector solitons composed
of the components localized in two different gaps: IR: un-
staggered; BR: staggered. Propagation constants correspond to
the points marked as I, II, and III in the upper plots. The array
parameters match Fig. 3.
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as follows from the nonmonotonic dependence of the gap-
mode eigenvalues shown in Fig. 3(c).

The eigenvalues of the linear guided modes define the
point where a multigap vector soliton bifurcates from
their scalar counterparts. Initially the amplitude of the
guided mode is very small, but it increases away from the
bifurcation point, and the mode interacts with the soliton
waveguide creating a coupled intergap state; see Fig. 4. In
the vicinity of the bifurcation point, the soliton symmetry
and stability are defined by the large-amplitude soliton
component. For example, the AA-type discrete vector
soliton shown in Fig. 4(III) is stable because the powerful
A-type mode in the IR gap suppresses instability of the
second component. However, as the power in the second
component grows, the soliton properties change dramati-
cally: (i) the AA state becomes unstable, and at the same
time (ii) a stable AB-type asymmetric vector soliton
emerges; see modes II and I in Fig. 4 (bottom), respec-
tively. These complex existence and stability properties
underline a nontrivial nature of nonlinear intergap cou-
pling between the localized components with different
symmetries.
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We note that such a simple way to engineer nonlinear
coupling in the superlattices can lead to novel effects in
the soliton collisions. Both coherent interaction of soli-
tons from different gaps and vector solitons with the
components from several gaps can be controlled by en-
gineering the superlattice parameters, thus leading to
novel features in the soliton switching and steering.

In conclusion, we have studied nonlinear coupling and
localization in periodic systems with multigap transmis-
sion spectra. We have predicted the existence of novel
types of multigap vector solitons and studied their stabil-
ity. Using the example of a binary waveguide array, we
have demonstrated the basic concepts of the engineering
of nonlinear interband interactions in such structures,
which in turn determine the key soliton properties.
We note that multigap solitons were also predicted inde-
pendently [22].
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