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A novel finite basis set method is used to calculate the Bethe logarithm for the ground 2 2S1=2 and
excited 3 2S1=2 states of lithium. The basis sets are constructed to span a huge range of distance scales
within a single calculation, leading to well-converged values for the Bethe logarithm. The results are
used to calculate an accurate value for the complete quantum electrodynamic energy shift up to order
�3 Ry. The calculated 3 2S1=2–2 2S1=2 transition frequency for 7Li is 27 206:092 6�9� cm�1, and the
ionization potential for the 2 2S1=2 state is 43 487:158 3�6� cm�1. The 7Li–6Li isotope shift is also
considered, and all the results compared with experiment.
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Schrödinger equation, Erel is the lowest-order � Ry
relativistic correction from the Breit-Pauli interaction,

leading higher-order terms in a hydrogenic approxima-
tion are
The exquisite accuracy of modern atomic transition
frequency measurements has the potential to create new
measurement tools for other purposes, such as measure-
ment of the nuclear charge radius, or determination of the
fundamental constants, provided that the underlying
atomic theory is sufficiently well understood. For simple
atoms such as helium and lithium, the nonrelativistic
energies and lowest-order relativistic corrections can be
calculated to spectroscopic accuracy [1–3], but the quan-
tum electrodynamic (QED) corrections still represent a
major obstacle to further progress. The principal diffi-
culty is the calculation of the so-called Bethe logarithm,
which determines the dominant part of the electron self-
energy. This long-standing problem in atomic physics has
been solved for hydrogen [4], and recently also for helium
[5], but no results of useful accuracy have been obtained
for any of the heavier atoms. The calculation is excep-
tionally difficult because the dominant contribution
comes from a sum over inner shell excitations to inter-
mediate states lying high in the photoionization contin-
uum. In addition, high accuracy is required since the first
few significant figures in the Bethe logarithm are state
independent, and so cancel from the physically relevant
transition frequencies.

The purpose of this Letter is to report the first complete
account of the QED shift up to terms of order �3 Ry for
lithium, and to compare the results with recent high
precision measurements. The mass-dependent part of
the QED shift plays a key role in several recent proposals
to use the isotope shift in lithium to measure the nuclear
charge radius for exotic nuclei such as 11Li.

For low-Z atoms and ions (where Ze is the nuclear
charge), it is useful to expand the total energy of an
atomic state in the form

E � ENR � Erel � EQED; (1)

where ENR is the nonrelativistic energy from the
2
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and EQED is the QED shift of order �3 Ry (including
ln� terms) and higher. In addition to the expansion in
powers of �, each of the terms in Eq. (1) has an expansion
in powers of 	=M of the form

T � T�0� � �	=M�T�1� � � � � ; (2)

where 	=M � me=�me �M� is the ratio of the electron
reduced mass to the nuclear mass. Since ENR and Erel are
known to sufficient accuracy from previous work, we will
focus our attention on EQED, given by

EQED � EL;1 � EL;2 � EHO; (3)

where EL;1 and EL;2 represent the lowest-order �3 Ry
electron-nucleus and electron-electron terms, respec-
tively, and EHO represents higher-order terms of O��4�
Ry and higher. EL;1 is given by the Kabir-Salpeter for-
mula [6]

EL;1 �
4
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X
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�
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where ��nLS� 	 lnk0�nLS� is the Bethe logarithm for a
state with principal, angular momentum, and spin quan-
tum numbers n, L, and S, respectively, and EL;2 accounts
for the Araki-Sucher terms [7]
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where

Q �
1

4�

X
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lim
a!0

hr�3
ij �a� � 4���� lna���rij�i; (6)

� is Euler’s constant, and r�3
ij �a� � 0 for rij < a. The
2003 The American Physical Society 113004-1



P H Y S I C A L R E V I E W L E T T E R S week ending
12 SEPTEMBER 2003VOLUME 91, NUMBER 11
EHO � 4
3�

3Z
X
i

h��ri�i��3��Z�0:765 406

� 0:404 17�=�� � � ��: (7)

All of the above terms can be readily calculated if
accurate wave functions are available, with the exception
of the Bethe logarithm defined by

��nLS� �
N

D
	

P
n
jh0jpjnij2�En � E0� lnjEn � E0jP

n
jh0jpjnij2�En � E0�

;

(8)

where hr1; r2j0i 	 �0�r1; r2� refers to the nonrelativistic
wave function of the state in question, and the sum over n
covers all virtual intermediate states connected to j0i by
the dipole transition operator p �

P
ipi expressed in the

momentum gauge.
The Bethe logarithm is difficult to calculate because

the energy difference inside the summation weights very
highly excited states. In fact, as shown in Ref. [5] for H
and He, the partial sums up to energy E increase almost
linearly with lnE up to about 106 eV, and one must go to
much higher energies still ( � 1020 eV) to get a value
accurate to several significant figures. The partial sums
for Li are nearly the same. In addition, the dominant
hydrogenic part of the Bethe logarithm comes from ex-
citations of the inner 1s electron, not the more obvious
valence electron usually associated with optical excita-
tions. Usual methods of calculation based on pseudostate
representations for the intermediate states fail because the
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highest energy represented in the pseudostate representa-
tion is typically 1000 eV or less, which is far below the
region of maximum contribution to the Bethe logarithm.

Because of this lack of sufficiently high energies in the
pseudostate expansion, the only method of calculation
available until recently was an integral transformation
method suggested by Schwartz [8] and employed by
Baker et al. [9], Korobov [10], and Pachucki and
Sapirstein [11] for helium. However, it is computationally
very slow and difficult to implement. To avoid this prob-
lem, we have recently introduced a modified version of
the pseudostate expansion method in which multiple
layers of basis functions are constructed to cover a
huge range of distance scales, and, correspondingly, a
huge range of energy scales up to 1020 eV or more.
Despite this huge range, the total basis set still remains
reasonably compact, thus providing a very efficient and
computationally tractable method of completing the sum
over intermediate states for the Bethe logarithm.

Consider the ground 1s22s 2S1=2 state of Li as an ex-
ample (we will use the abbreviated notation 2 2S1=2). It is
connected by electric dipole transitions to a complete set
of intermediate 2P states, with excitations of the inner 1s
electrons being particularly important. In the pseudostate
method, the actual spectrum of intermediate states is
replaced by a set of pseudostates corresponding to the
complete set of eigenvectors of the generalized eigenvalue
problem for the Hamiltonian matrix expressed in a non-
orthogonal finite basis set of functions. In the present
case, the basis functions of 2P symmetry are constructed
according to
rj11 r
j2
2 r

j3
3 r

j12
12 r

j23
23 r

j31
31 exp���tr1 � �tr2 � �tr3�YLM

�l1l2�l12;l3
�r1; r2; r3�; (9)
where t labels different sets of nonlinear parameters, and
Y denotes a vector coupled product of spherical harmon-
ics. As described by Yan and Drake [2], the ranges of
possible values for j12, j23, and j31 are divided into five
sectors with separately optimized nonlinear parameters
in each sector. For each sector, the basis set is generated
such that j1 � j2 � j3 � j12 � j23 � j31 � �t; , where �t
is an integer. For the first five sets,

�l1; l2; l3� � �0; 0; 1�; (10)

��1;�2;�3;�4;�5� � �2; 2; 2; 2; 3�; (11)

which gives rise to a total of 19 terms (see Table I of
Ref. [2]). The nonlinear parameters are exactly the same
as those for the ground state [2]. This forms the ground
layer of longest range basis functions. The next step is to
augment the ground layer with successive layers of
shorter range functions of the form

rj11 r
j2
2 r

j3
3 r

j12
12 r

j23
23 r

j31
31 e

��Zr1��Z�1�gKr2��Z�2�r3=n�

�YLM
�l1l2�l12;l3

�r1; r2; r3�; (12)
with K � 0; . . . ;� and � is a given integer. In the above,
n is the principal quantum number of the outer electron in
the state of interest, Z is the nuclear charge, �l1; l2; l3� �
�0; 1; 0�, and g � 9. Thus, the distance scale grows pro-
gressively shorter with increasing K for the p electron.
The basis is generated such that

j1 � j2 � j3 � j12 � j23 � j31 � �� K � 2; (13)

so that the numbers of terms progressively decrease with
increasing K. The result is to build a pyramid of basis
functions with each layer of the pyramid having fewer
terms and a shorter distance scale in proportion to 1=gK

for the p electron. After diagonalization, the energy of
the highest pseudostate is of the order of g2� Ry. In order
to assess the convergence, a series of calculations is done
with � increasing from 2 to 6. The value g � 9 is chosen
to optimize the rate of convergence.

A further important subtlety in building the basis set is
to include the j2 � 0 term for the p electron. This is one
power of r more singular than the usual r cos# behavior
for p electrons at the origin, but terms of this type are
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TABLE I. Convergence study for the Bethe logarithm for the ground state of lithium. N is
the number of terms in the basis set.

� N ��0� Difference Ratio 2�Z
P

ih��ri�i

2 87 2.846 5271 260.4295
3 207 2.964 2629 0.117 735 7 260.8115
4 459 2.978 9857 0.014 722 8 8.00 260.8878
5 937 2.980 7196 0.001 733 9 8.49 260.9097
6 1763 2.980 9043 0.000184 7 9.39 260.9176

Extrapolation 2.980 925(3) 0.000 021(3) 260.924(2)
Exact [3] 260.927 045

TABLE III. Mass-dependent expansion coefficients for con-
tributions to the lithium 1s23s 2S–1s22s 2S transition energy
and 1s22s 2S ionization potential (I.P.). For the finite nuclear
size correction, the form is Enuc � �C�0�

r2rms
� �	=M�C�1�

r2rms
�r2rms

with rrms in units of the Bohr radius. Units are 2R1.

Term 3 2S1=2–2 2S1=2 2 2S1=2 I.P.

E�0�
NR 0.123 961 902 501(19) 0.198146 910 981(7)
�1�
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known to be part of the exact analytic solution for a
hydrogen atom with a ��r� perturbation [12].

Table I shows the pattern of convergence of the Bethe
logarithm for the 2 2S1=2 state of lithium, calculated in
the acceleration gauge. The numbers in the fourth column
are the differences between successive calculations, and
the numbers in the fifth column are the ratios of differ-
ences. As in the hydrogenic case [5], the series converges
approximately as a geometric series that can readily
be extrapolated to infinity. Assuming that the ratios
for Li similarly remain approximately constant, the ex-
trapolated value for infinite nuclear mass is ��0� �
2:980 925�3�, with k0 in units of Z2 Ry. For comparison,
the values for Li��1s2 1S� and Li���1s� are 2.982 624 56
and 2.984 128 56, respectively [5], indicating that an ac-
curacy of 0:06% in ��0� is needed just to get the first figure
correct in the contribution to the ionization energy.

As a check on the accuracy, the last column of Table I
shows the value of the denominator D in Eq. (8), which
by an exact sum rule is equal to the matrix element D !
2�Z

P
ih��ri�i if the sum over intermediate states is com-

plete. The good agreement for the extrapolated value
indicates that the pseudospectrum provides an adequate
representation of the intermediate states.

Similar calculations were performed for the
1s23s 2S1=2 state, and then all the calculations were re-
peated for the finite nuclear mass case in order to calcu-
late the coefficient of the mass-dependent correction (due
to mass polarization) by differencing. The determination
of this quantity is of key importance for applications to
isotope shifts and the determination of the nuclear charge
TABLE II. Summary of results for the lithium Bethe loga-
rithm, expressed in the form � � ��0� � �	=M���1� �
ln�Z2	=me�.

State ��0� ��1�

Li�1s22s 2S1=2� 2.980 925(3) 0.1136(2)
Li�1s23s 2S1=2� 2.982 40(4) 0.111(1)
Li��1s2 1S0� 2.982 624 55(4)a 0.109 55(4)a

aDrake and Goldman [5].
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radius. The results of all the calculations are summarized
in Table II.

With these results in hand, it is now possible to perform
a complete calculation of the ionization energy for the
2 2S1=2 state, and the 3 2S1=2–2

2S1=2 transition energy,
complete through terms of order �3 Ry. Also, the domi-
nant one-electron part of the higher-order QED correc-
tions can be included, as shown in Eq. (7). The results
shown in Table III combine the present QED terms with
previous results for the lower order terms [3]. The mass-
dependent expansion coefficients are displayed explicitly,
with the superscripts being the powers of 	=M as shown
in Eq. (2). With these results, the transition energies and
isotope shifts can be calculated for any of the isotopes of
lithium.

As an example, the contributions to the 3 2S1=2–2
2S1=2

transition frequency and the ionization potential for the
2 2S1=2 state of 7Li are listed in Table IV, and compared
with the recent high precision measurement of
Radziemski [13] for the transition frequency, and the
older value from Moore [14] for the ionization potential.
ENR �0:133 764 851 4�3� �0:211 013 907 61�25�
E�2�
NR 0.123 64810(29) 0.235 286 29(17)

E�0�
rel 0.000 009 518 3(18) 0.000 012 809 37(6)

E�1�
rel �0:000 002 2�6� �0:000 000 6�5�

E�0�
L;1 �0:000 000 904 9�22� �0:000 001 177 01�16�

E�1�
L;1 0.000 000 772(7) 0.000 001025(6)

E�0�
L;2 0.000 000 048 61(12) 0.000 000 062 80(12)

E�1�
L;2 �0:000 000 131�24� �0:000 000 167�24�

E�0�
HO �0:000 000 024�3� �0:000 000 032�3�

C�0�
r2rms

�0:666 646�5� �0:870 791 5�3�

C�1�
r2rms

1.9801(19) 2.576 23(19)
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TABLE IV. Contributions to the 7Li 1s23s 2S–1s22s 2S tran-
sition energy and 1s22s 2S ionization potential (I.P.), in units
of cm�1.

Term 3 2S1=2–2 2S1=2 2 2S1=2 I.P.

E�0�
NR 27 206.492 856(4) 43 488.220 244 9(16)

E�1�
NR	=M �2:295 854 30�16� �3:621 707 668�4�

E�2�
NR�	=M�2 0.000165 962 0.000 315 803
E�0�
rel 2.089 0(4) 2.811 33(2)

E�1�
rel	=M �0:000 04�1� �0:000 011�9�
E�0�
L;1 �0:198 6�3� �0:258 32�3�

E�0�
L;2 0.010 747 0.013 884

E�0�
HO �0:005 4�4� �0:007 0�4�

Enuc �0:000 298�8� �0:000 389�10�
Total 27 206.092 6(9) 43 487.158 3(6)

Experiment 27 206.095 2(10)a 43 487.150(5)b

Difference �0:002 6�19� 0.008(5)
aRadziemski et al. [13].
bMoore [14].
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The values of the fundamental constants and physical
data used for 6Li and 7Li are

R1 � 109 737:315 685 49�83� cm�1;

� � 1=137:035 999 76�50�;

	=M�6Li� � 9:121 676 23�76� � 10�5;

	=M�7Li� � 7:820 202 24�56� � 10�5;

rrms�
6Li� � 2:55�4� fm;

rrms�
7Li� � 2:39�3� fm;

where rrms is the rms nuclear charge radius. The compari-
son for the transition frequency shows a marginal dis-
agreement of �0:0026�19� cm�1, but the agreement is
certainly good enough to indicate that the calculated
ionization potential of 43 487:1583�6� cm�1 is consider-
ably more accurate than the experimental value. The
dominant uncertainty is due to EHO in Table IV.

The calculated 7Li–6Li isotope shift of
11454.25(5) MHz for the 3 2S1=2–2

2S1=2 transition agrees
with the recently measured value 11 453.734(30) MHz
[15] to within the �0:4 MHz ( � 1:3� 10�5 cm�1) un-
certainty in the calculated value due to the nuclear size
correction [3]. Thus, the comparison between theory
and experiment for the 3 2S1=2–2

2S1=2 transition in 6Li
shows exactly the same marginal disagreement of
�0:0026�19� cm�1 as in 7Li. The cause of the discrep-
ancy must therefore be either a mass independent term
in the theory or a systematic frequency shift in the
measurements.

In summary, the results illustrate the use of a novel
discrete basis set method that spans a huge range of
energy scales within a single calculation. Similar tech-
niques may prove to be useful in a wide variety of other
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applications in which many different distance or energy
scales must be taken into account simultaneously. The
results for the QED shift provide a standard of reference
to check approximation methods that can be applied to
more complex systems. For example, estimates based on
the hydrogenic Lamb shift with a screened nuclear
charge [16] tend to seriously underestimate the QED shift
[17]. The particular significance of the results for lithium
is that the accurately calculated Bethe logarithms, and
their mass dependence, remove the main source of un-
certainty in calculating the QED contribution to the iso-
tope shift. This opens the way to the use of isotope shifts
as a reliable method of measuring the nuclear charge
radius in exotic nuclei such as 11Li [15].

This work was supported by the Natural Sciences and
Engineering Research Council of Canada, and by
SHARCnet.

Note added.—Similar results for the Bethe logarithm
of the 2 2S state of lithium have recently been reported by
Pachucki and Komasa [18].
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