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Parametric Resonance in Quantum Field Theory
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We present the first study of parametric resonance in quantum field theory from a complete next-to-
leading order calculation in a 1=N expansion of the two-particle irreducible effective action, which
includes scattering and memory effects. We present a complete numerical solution for an
O�N�-symmetric scalar theory and provide an approximate analytic description of the nonlinear
dynamics in the entire amplification range. We find that the classical resonant amplification at early
times is followed by a collective amplification regime with explosive particle production in a broad
momentum range, which is not accessible in a leading-order calculation.
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ries in 3� 1 dimensions and with a nonzero macroscopic
field �, relevant for realistic particle physics applications.

value �a�x� � h’a�x�i and the connected propagator
Gab�x; y� � hTC’a�x�’b�y�i ��a�x��b�y� [10]:
In quantum field theory the phenomenon of parametric
resonance describes the resonant amplification of quan-
tum fluctuations, which can be interpreted as particle pro-
duction. It provides an important building block for our
understanding of the (pre)heating of the early universe
after a period of inflation [1]. It has been frequently dis-
cussed for relativistic heavy-ion collisions in the forma-
tion of disoriented chiral condensates [2], or the decay of
Polyakov-loop condensates [3], or parity-odd bubbles [4].

Despite being a basic phenomenon that can occur in a
large variety of quantum field theories, parametric reso-
nance is a rather complex process, which has so far defied
most attempts for a complete analytic treatment even for
simple theories. It is a far-from-equilibrium phenomenon
involving densities inversely proportional to the coupling.
The nonperturbatively large occupation numbers cannot
be described by standard kinetic descriptions. So far,
classical statistical field theory simulations on the lattice
have been the only quantitative approach available [5].
These are valid for not too late times, before the approach
to quantum thermal equilibrium sets in. Up to now,
studies in quantum field theory have been mainly limited
to linear or mean-field-type approximations (leading or-
der in large N, Hartree) [6], which present a valid de-
scription for sufficiently early times. However, they are
known to fail to describe thermalization and miss impor-
tant rescattering effects [5,7]. Going beyond mean field
has long been a major difficulty in practice: Similar to
perturbation theory, standard approximations such as
based on 1=N expansions of the one-particle irreducible
(1PI) effective action can be secular in time and do not
provide a valid description. In contrast, it has recently
been demonstrated [8,9] for 1� 1 dimensional theories
that far-from-equilibrium dynamics and subsequent ther-
malization can be described using a 1=N expansion of the
two-particle irreducible (2PI) effective action [9–11].
Below, we show that this provides a systematic and prac-
ticable nonperturbative approach for quantum field theo-
0031-9007=03=91(11)=111601(4)$20.00 
In this work, we present the first quantum field theo-
retical description of the phenomenon of parametric
resonance taking into account rescattering: For an
O�N�-symmetric scalar field theory we employ the 2PI
1=N expansion to next-to-leading order (NLO), which
includes off-shell and memory effects [9,11]. We point
out that the approach solves the problem of an explicit
description of the dynamics of correlation functions at
nonperturbatively large densities. We present a complete
numerical solution of the corresponding equations of
motion. Moreover, we identify the relevant contributions
to the dynamics at various times and provide an approxi-
mate analytic description of the nonlinear dynamics for
the entire amplification range. Apart from the resonant
amplification in the linear regime, we identify two char-
acteristic time scales, which signal strongly enhanced
particle production in a broad momentum range due to
nonlinear, source effects. This collective amplification is
crucial for the rapid approach to a subsequent, quasista-
tionary regime, where direct scattering drives a very slow
evolution towards thermal equilibrium. We emphasize
that these processes cannot be seen in mean-field approxi-
mations. Similar phenomena have been observed in
classical-field theories [5], and we present an analytic
criterion for the validity of classical statistical approxi-
mations. These effects are important for a reliable de-
scription of the system at the end of the resonance stage
for finite N & 1=�. For realistic inflationary models with
typically � � 1 this is, in particular, crucial to determine
whether there are any radiatively restored symmetries.

We consider a relativistic real scalar field ’a (a �
1; . . . ; N) with action S�’� � �

R
xf

1
2’a��x �m2�’a �

��=4!N��’a’a�
2g, where summation over repeated indi-

ces is implied. We use the notation
R
x �

R
C dx0

R
dx with

C denoting a closed time path along the real axis. All
correlation functions of the quantum theory can be ob-
tained from the 2PI generating functional for Green’s
functions ���;G�, parametrized by the field expectation
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���;G� � S����
i
2
Tr lnG�1 �

i
2
TrG�1

0 ���G��2��;G�;

where iG�1
0;ab�x; y;�� � �2S���=��a�x���b�y�. The

term �2��;G� contains all contributions beyond one-
loop order and can be represented as a sum over closed
2PI graphs [10]. To NLO in the 2PI 1=N expansion,
�2��;G� contains the diagrams with topology shown
in Fig. 1 [9,11]. The infinite series can be summed
analytically and the equations of motion [12] are ob-
tained as

����;G�
��a�x�

� 0;
����;G�
�Gab�x; y�

� 0: (1)

As we will show below, for the phenomenon of para-
metric resonance, each diagram of the infinite series in
Fig. 1 eventually contributes at the same order in the
coupling �. In this sense, the 2PI 1=N expansion to
NLO represents a minimal approach for a controlled
description including rescattering. This justifies the rather
involved complexity of the approximation.

Overview.—Parametric amplification of quantum fluc-
tuations can be best studied in a weakly coupled system
that is initially in a pure quantum state, character-
ized by a large ‘‘classical’’ field amplitude �a�t� �
��t�M0

������������
6N=�

p
�a1, and small quantum fluctuations, cor-

responding to vanishing particle numbers at initial time.
Here M0 sets our unit of mass and the rescaled field
��t � 0� � �0 is of order unity. We first present results
from a full numerical [13] integration of the time evolu-
tion at NLO. In Fig. 2 we show the classical field and the
fluctuation contributions to the (conserved) total energy
as functions of time. The former dominates at early times
and one observes that more and more energy is converted
into fluctuations as the system evolves. A characteristic
time — denoted as tnonpert in Fig. 2 — is reached when the
classical and the fluctuation parts of the energy become of
the same size. Before this time, the coherent oscillations
of the field � lead to a resonant enhancement of fluctua-
tions in a narrow range of momenta around a specific
value jpj ’ p0: this is parametric resonance [1,6].
Nonlinear interactions between field modes then cause
this amplification to spread to a broad range of mo-
menta. We find that the resulting rate of amplifica-
tion exceeds the characteristic rate �0 for the resonant
growth. This is illustrated in Figs. 3 and 4, where the
+ + + +

+ + +
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+ +

FIG. 1. The dots indicate that each diagram is obtained from
the previous one by adding another ‘‘rung’’ with two full propa-
gator lines at each vertex. The crosses denote field insertions.
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effective particle numbers [8] are displayed for vari-
ous momenta as a function of time, both for the trans-
verse (G?) and the longitudinal (Gk) sector, with Gab �
diagfGk; G?; . . . ; G?g. One observes that, in contrast to
the rapid changes for particle numbers before tnonpert, a
comparably slow quasistationary evolution takes place at
later times. The fluctuation dominated regime for t *

tnonpert is characterized by strong nonlinearities. For in-
stance, from Fig. 2 one infers for t ’ tnonpert that the
classical-field decay ‘‘overshoots’’ and is temporarily re-
versed by feedback from the modes. This can be directly
seen in the evolution for the rescaled field shown in Fig. 5.
The particle numbers of Figs. 3 and 4 exhibit correspond-
ingly a reverse behavior. Very similar phenomena have
been observed in related classical theories [5], though a
direct comparison requires simulations for the same
model as studied here [14]. There the full nonlinearities,
i.e., including all orders in 1=N, are taken into account
while leaving out quantum corrections. This indicates the
capability of the 2PI 1=N expansion at NLO to capture
the dominant nonlinear dynamics.

The characteristic properties described above can be
understood analytically from the evolution equations
for the Fourier modes of the one- and two-point
functions. Separating real and imaginary parts with
Gk;?�t; t

0; p� � Fk;?�t; t
0; p� � i

2 �k;?�t; t
0; p�sgnC�t � t0�,

the real �k;? denote the spectral and Fk;? the statistical
two-point functions [8,9]. We define

M2�t� � m2 �
�
6N

�3Tk�t� � �N � 1�T?�t��; (2)

where Tk;?�t� �
R
��dp=�2��3�Fk;?�t; t;p� with � � p0.

Initially, Fk�0; 0;p� � 1=2!k�p�, @tFk�t; 0;p�jt�0 � 0,
@t@t0Fk�t; t0;p�jt�t0�0 � !k�p�=2, and similarly for F?.
The frequencies are !k�p� � �p2 �M2

0�1� 3�2
0��

1=2,
M2

0 � M2�0�, and similarly for !?�p� with 3�2
0 ! �2

0.
The initial conditions for the spectral functions are
fixed by the equal-time commutation relations:
�k;?�t; t0;p�jt�t0 � 0 and @t�k;?�t; t0;p�jt�t0 � 1 [8,9].

(I) Early-time linear (Lamé) regime: parametric reso-
nance.—At early times the �-field evolution equation
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FIG. 2. Total energy (solid line) and classical-field energy
(dotted line) as a function of time for � � 10�6. The dashed
line represents the fluctuation part, showing a transition from a
classical-field to a fluctuation dominated regime.
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FIG. 3. Effective particle number density for the transverse
modes as a function of time for various momenta p � 5p0. At
early times, modes with p ’ p0 are exponentially amplified
with a rate 2�0. Because of nonlinearities, one observes sub-
sequently an enhanced growth with rate 6�0 for a broad
momentum range.
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receives the dominant [O��0�] contributions from the
classical action S. The classical-field dynamics is charac-
terized by rapid oscillations with constant amplitude and
period 2�=!0. The evolution equations for the two-point
functions at O��0� correspond to free-field equations with
the addition of a time dependent mass term 3�2�t� for the
longitudinal and �2�t� for the transverse modes. The
dynamics in this linear regime has been extensively
studied in the literature and is known to be described
by the solution of a Lamé equation [1,6]: Parametric
resonance manifests itself by an exponential growth
of the statistical two-point functions describing par-
ticle production in a narrow momentum range with
p2 � ��2

0=2�. Averaging over the short-time scale �!�1
0

one finds for the transverse modes for t; t0 � ��1
0 :

F?�t; t
0;p0� � e�0�t�t0�; (3)

for the maximally enhanced mode with p0 ’ ��0=2�. One
finds a much smaller growth for the longitudinal modes
(cf. also Fig. 4). The analytic solution to O��0� agrees
accurately with the NLO numerical results at early times.
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FIG. 4. Same as in Fig. 3, for the longitudinal modes.
Nonlinear source effects trigger an exponential growth with
rate 4�0 for p & 2p0. The thick line corresponds to a mode in
the parametric resonance band, and the long-dashed line for a
similar one outside the band. The resonant amplification is
quickly dominated by source-induced particle production.
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(II) Source-induced amplification regime: enhanced
particle production for longitudinal modes.—Because
of the exponential growth of the transverse fluctua-
tions for �0t � 1, the O��0� approximation eventually
breaks down at some time. Using the two-loop graphs of
Fig. 1, at O��� the evolution equation for Fk can be
approximated by

�@2t � p2 � 3�2�t� �M2�t��Fk�t; t
0;p�

’ 2��2�t�T?�t�Fk�t; t
0;p� � ���t���t0��F

?�t; t
0;p�;

(4)

with �F
?�t; t

0;p� �
R
dqF?�t; t

0;p� q�F?�t; t
0;q�, and

� � �=�2��3�N � 1=6N��c2=!2
0� with constant c� 1.

Here, we have used that the momentum integrals are
dominated by the amplified transverse modes. In addi-
tion, we exploit the fact that, for t00 ’ t & tnonpert,

F2
?�t; t

00;p0� � �2
?�t; t

00;p0�=4: (5)

Its validity can be seen from (3) and the corresponding
behavior of �?�t; t

00;p0� � e�0�t�t00� for t00 & t. We empha-
size that strictly neglecting in the evolution equations �2

terms as compared to F2 terms for all modes and all
times corresponds to the classical statistical field theory
limit [9]. This provides an explicit analytic criterion for
the applicability of the classical methods employed in [5].
For sufficiently early times, all momentum integrals are
indeed dominated by the enhanced modes p ’ p0 for
which (5) is valid. A detailed analysis reveals that the
memory integrals appearing in the equations of motion
are dominated by the latest times t00 ’ t: One can explic-
itly verify that effective locality, described by the re-
placement

R
t
0 dt

00 !
R
t
t�c=!0

dt00 [cf. Eq. (4)], is valid for
the time-averaged behavior over the short-time scale
�!�1

0 . We conclude that classical statistical approxima-
tions can provide a good description in this regime.

The first term on the right-hand side of (4) is a
NLO contribution to the mass, whereas the second
term represents a source term, resulting from annihila-
tions of amplified transverse modes as well as stimu-
lated emission processes. To evaluate the momentum
integrals, we use a saddle point approximation around
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FIG. 5. The rescaled field � as a function of time for � �
10�6 (top panel) and � � 10 (bottom panel).
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p ’ p0, valid for t; t0 � ��1
0 , with F?�t; t

0;p� ’
F?�t; t

0;p0� exp��j�00
0 j�t� t0��p� p0�

2=2�:

T?�t� ’
p2
0F?�t; t;p0�

2��3j�00
0 jt�

1=2
; (6)

�F
?�t; t

0; 0� ’
p2
0F

2
?�t; t

0;p0�

4��3j�00
0 j�t� t0��1=2

: (7)

Here we wrote the source term for its maximum at
p � 0. More precisely, it affects all modes with p &

2p0. An important characteristic time is reached when
the mass corrections become comparable to the classical
mass term. This can be seen to happen at tnonpert ’
�ln��1�=�2�0�, when T? ’ O���1� (see also [6]). Note
that at this time, both the LO and the NLO mass terms
are of the same order in �, but with opposite sign. We
point out that the source term in (4) becomes important at
the earlier time

tsource ’ tnonpert=2; (8)

when F?�t; t
0;p0� ’ O�N0��1=2�. For t * tsource, the ex-

ponentially growing source drives the dynamics of lon-
gitudinal modes and one finds a strong amplification for
p & 2p0: Fk�t; t0;p� � exp�2�0�t� t0��. This agrees pre-
cisely with the numerical results shown in Fig. 4.

(III) Collective amplification regime: explosive par-
ticle production in a broad momentum range.—A similar
analysis can be made for the transverse fluctuations. The
approximate evolution equation for F? has a similar
structure as (4). Beyond the O��0� (Lamé) description,
it receives contributions from the feedback of the longi-
tudinal modes at O��� and from the amplified transverse
mode at O��2�. The corresponding mass corrections re-
main small until tnonpert, whereas the source term is para-
metrically of the form ��2F3

?=N. This leads to the
characteristic time

tcollect ’ 2tnonpert=3� �lnN�=�6�0� (9)

at which F?�t; t
0;p0� ’ O�N1=3��2=3�. Correspondingly,

for tcollect & t & tnonpert one finds a large particle produc-
tion rate �6�0 for a wide range of momenta, in agree-
ment with the full NLO results in Fig. 3. In this time
range the longitudinal modes exhibit an enhanced am-
plification as well (cf. Fig. 4). The abundant particle
production is accompanied by an exponential decrease
of the classical-field energy. We emphasize that the col-
lective amplification regime is absent in the LO large-N
approximation. Consequently, even for the transverse
sector the latter does not give an accurate description at
intermediate times if tcollect � tnonpert, that is for N & ��1.

(IV) Nonperturbative regime: quasistationary evolu-
tion.—At t ’ tnonpert one finds F?�t; t0;p0� ’ O�N0��1�.
As a consequence, there are leading contributions (� �0)
to the dynamics coming from all loop orders (cf. Fig. 1).
In particular, the evolution equations are no longer
‘‘local’’ in the sense described under (II) and memory
111601-4
effects become important. In contrast to the rapid reso-
nant dynamics before tnonpert, a comparably slow, quasi-
stationary evolution driven by direct scattering sets in.We
emphasize that the collective amplification regime trig-
gered a rapid approach to monotonously decreasing par-
ticle number distributions as functions of momentum,
which become quasistationary afterwards (cf. Figs. 3
and 4). The approach to true thermal equilibrium is ex-
ceedingly slow for the employed range of couplings � �
10�6–10, for which a non-negligible parametric reso-
nance regime can be observed. For phenomenological
applications it is therefore crucial that in the quasistation-
ary, prethermal regime in the spirit of Refs. [2,14] a
number of aspects do not differ much from the late-
time thermal regime [15].
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