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Elasticity of Stiff Polymer Networks
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We study the elasticity of a two-dimensional random network of rigid rods (‘‘Mikado model’’). The
essential features incorporated into the model are the anisotropic elasticity of the rods and the random
geometry of the network. We show that there are three distinct scaling regimes, characterized by two
distinct length scales on the elastic backbone. In addition to a critical rigidity percolation region and a
homogeneously elastic regime we find a novel intermediate scaling regime, where the elasticity is
dominated by bending deformations.
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depend on the number of cross-links and the density of hinges’’). Similar to thermally fluctuating semiflexible
The elasticity of cells is governed by the cytoskeleton,
a partially cross-linked network of relatively stiff fila-
ments forming a several 100 nm thick shell called the
actin cortex [1]. While the statistical properties of single
cytoskeletal filaments are by now relatively well under-
stood [2,3], theoretical concepts for the elasticity of stiff
polymer networks are still evolving. One major open
question is how stresses and strains are transmitted in
such networks. In synthetic gels formed by rather flexible
chain molecules the response to macroscopic external
forces is — on the level of single filaments — isotropic
and entropic in origin. It is generally believed that macro-
scopic stresses are transmitted in such a way that local
deformations within the network stay affine, i.e., that the
end-to-end distance of individual filaments follows the
macroscopic shear deformation [4]. In contrast, the build-
ing blocks of the actin cortex are semiflexible polymers,
whose hallmark is an extremely long persistence length
‘p comparable to the total contour length ‘. As a con-
sequence, the response of such stiff polymers to external
forces shows a pronounced anisotropy [5]. Consider a semi-
flexible polymer with one end clamped at a fixed orienta-
tion. When forces are applied at the other end transverse
to the tangent vector at the clamped end, the response
may be characterized by a transverse spring coefficient
k?�‘� � 3�=‘3 proportional to the bending modulus �.
Whereas this response is of purely mechanical origin, the
linear response to longitudinal forces is due to the pres-
ence of thermally excited undulations which make the
average end-to-end distance of the polymer shorter than
its contour length. The corresponding effective spring
coefficient kk�‘� � 6�2=�kBT‘4� is proportional to �2=T
indicating the breakdown of linear response for very stiff
filaments [2]. In a typical network one expects the dis-
tance between cross-links ‘c to be much smaller than the
persistence length and filament length. Hence we have
kk�‘c�=k?�‘c� � 2‘p=‘c � 1, i.e., the elastic response of
the filaments is indeed highly anisotropic.

The anisotropic elastic properties of individual fila-
ments suggests that the macroscopic elasticity of networks
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filaments, but also on the geometry and architecture of
the network. For some very regular networks such as a
triangular lattice the longitudinal spring coefficient kk
dominates the macroscopic moduli [6] since the network
cannot be strained without a change of the end-to-end
distance of individual polymers. In other regular network
architectures, the softer bending modes would be domi-
nant [7]. Naturally, this will lead to a very different
prediction for the elastic modulus of the network. It is
not at all obvious what type of network geometry (elon-
gation dominated versus bending dominated) is relevant
in less ideal structures with a significant amount of dis-
order as found in typical cytoskeletal networks.

As a first step towards understanding the elasticity of
stiff polymer networks we consider a two-dimensional
model defined as follows (see Fig. 1). We generate the
random network by placing N linelike objects of equal
length ‘ on a plane with area A � L2 such that both
position and orientation of the filaments are uniformly
randomly distributed. Periodic boundary conditions in
both directions are used. Upon increasing the line density
� � N‘=A there is a critical threshold �c for geometric
percolation [8]. Numerical simulations [9] show that the
correlation length � ��� �c�

�� of the incipient infinite
percolation cluster scales with a critical exponent � �
4=3, identical to the value obtained for random site per-
colation on a lattice [10]. Transport of scalar quantities
like the conductivity is also in the same universality class
as lattice models [11]. In order to study the transport of
nonscalar quantities such as shear stress we need to
specify how forces are transmitted between the building
blocks of the network. In our Mikado model the building
blocks are homogeneous elastic rods characterized by a
Young modulus E and a circular cross section of radius r.
Wherever two rods intersect, they are connected by a
cross-link with zero extensibility. In the cytoskeleton
one finds a variety of linker proteins with a range of
mechanical properties [12]. Here we restrict ourselves to
cross-links that either fix the relative orientation of the
rods (‘‘stiff cross-links’’) or allow free rotation (‘‘free
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FIG. 1 (color). Typical networks at
low and high density. Dangling bonds,
not contributing to the elasticity, have
been cut off. The stress distribution is
shown in false colors; the load on a fila-
ment increases from blue to red. The left
picture is for ��10, system size L�10,
and an aspect ratio � � 0:0001. 99:99%
of the strain energy is stored in bending
modes. In contrast, the right picture
shows a network for ��50, L�2, and
� � 0:01, where only 5% of the strain
energy is in bending modes; the remain-
der is stored in compression modes. For
the choice of units see the main text.
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polymers, the elastic response of a stick segment between
two neighboring cross-links is characterized by length
dependent force constants for compression or elongation,
kcomp�‘c� � �r2E=‘c, and bending, kbend�‘c� � k?�‘c� �
�3=4��r4E=‘3c. The distance between two cross-links ‘c
shows a Poissonian distribution, where the average dis-
tance of cross-links along a filament scales as the inverse
of the line density, �‘‘c � �=� [8]. While this is a purely
mechanical model that does not exhibit the temperature
dependent longitudinal linear response force constant kk
of thermally fluctuating semiflexible polymers given
above, it still captures the essential feature that the com-
pressional stiffness is much larger than the bending stiff-
ness kcomp�‘c�=kbend�‘c� � �4=3�‘2c=r2 � 1 for typical
densities of the network. It does not account for steric
effects due to thermal fluctuations of the filaments, which
give rise to the plateau modulus in solutions [13].

Consider the ground state energy of the network as a
function of the deviations of the positions of all cross-
links and the rod orientations at the cross-links from
their initial values. For small deformations of the net-
work, this function can be approximated by a quadratic
form that vanishes for vanishing deviations, as — by con-
struction — the undeformed network is not prestressed.
The matrix representing the quadratic form can be com-
puted from the network geometry and the elastic con-
stants. Note that this linearized model cannot account for
the effect of buckling instabilities appearing for finite
deformations. To analyze the elastic properties of the
model network, a shear deformation respecting the peri-
odic boundary conditions is enforced by demanding that
corresponding points on the left and right boundary of
the simulation cell undergo equal displacements while the
displacements of corresponding points on the upper and
lower boundary of the cell must agree vertically but differ
horizontally by a distance � � �L, where � is the shear
strain. The orientation of the rods at corresponding points
on the boundary are required to be equal. The remaining
degrees of freedom are then allowed to relax, i.e., the
harmonic approximation to the energy of the network is
minimized in the presence of the constraints. The deriva-
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tive of the resulting energy of the deformed state with
respect to the strain � is proportional to the shear modu-
lus. This reduces the determination of the modulus of a
given network to the solution of a linear equation.
However, for interesting parameters (thin rods), the prob-
lem is numerically highly unstable as we are searching
for the lowest point of a complicated high-dimensional
valley with extremely steep slopes but hardly varying
base altitude. The results presented below were obtained
using the commercially available finite element solver
Nastran by MSC Software.

In the following discussion we choose the rod length ‘
as unit of length and �=‘3 as unit for the elastic modulus.
Then the independent parameters are density �, system
size L and aspect ratio � � r=‘ of the rods. Note that the
latter is a measure of the relative magnitude of compres-
sional to bending stiffness.

We start with an analysis of the elasticity close to the
percolation threshold. For stiff cross-links we find that the
percolation threshold is the same for rigidity as for con-
nectivity percolation, �c � 5:71. For free hinges a higher
line density �c � 6:7 is needed for the network to be-
come rigid. This agrees well with recent results, �c �
6:68, for stiff fiber networks [14], where the cross-links
are fixed in space but the angles between the fibers can
vary. In both cases, we find that the shear modulus G
vanishes like G� ��� �c�

� as the line density ap-
proaches the critical value �c. For our numerical analysis
with finite systems we expect the shear modulus to obey
the following finite size scaling law

G � L��=� h�L=� ; (1)

where the scaling function behaves as h�x� � x�=�

and h�x� � 1 for large and small values of x � L=,
respectively. Figure 2 shows that the data collapse works
very well for densities ranging from values close to �c up
to � 	 20. For the data shown, L ranges from 2 to 30. For
larger densities, systematic deviations are clearly visible,
indicating that the length scale r � �‘ becomes relevant
here. We will discuss the behavior in the high density
regime in more detail below. We get the best data collapse
108103-2
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in the critical region if we choose the values 2:4
 0:2 and
2:3
 0:2 for the critical exponent �=� in the case of stiff
cross-links and free hinges, respectively. Since the dif-
ference between the exponents is within the statistical
error, we can make no definite conclusion whether net-
works with free hinges and stiff cross-links belong to
different universality classes. The rigidity exponent � 	
3:15
 0:2 is significantly lower than in other classes of
continuum percolation models, such as the ‘‘Swiss-cheese
model,’’ where � 	 5 [15,16]. It is also lower than the
value � 	 4 for lattice models with bond-bending forces
[10,17]. Hence it seems likely that the Mikado model
constitutes a new universality class for rigidity percola-
tion. Similar results have been found in Ref. [18].

We now come back to the systematic deviations from
the scaling law, Eq. (1), at densities above � 	 20. To un-
derstand these better, let us have a closer look at the shear
modulus as a function of r � �‘ for densities not too
close to the percolation threshold. In this regime the shear
modulus becomes independent of system size for moder-
ately large systems; for the following results we have
chosen systems satisfying L= � 200. Figure 3 shows
the shear modulus as a function of � for a series of den-
sities; we have communicated a preliminary version of
these data in Ref. [19]. Note that kbend�‘� is effectively
kept constant since we are measuring all elastic constants
in units of �=‘3. There are two strikingly different re-
gimes. For high densities and/or thick rods (� * 0:1),
where compressional stiffness is lower or comparable to
the bending stiffness (lower right part of Fig. 3), the shear
modulus scales linearly with the filament compressional
modulus and the number of filaments per unit area, G�
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FIG. 2 (color). Double logarithmic plot of the scaling func-
tion h�x� for the shear modulus of the ‘‘Mikado model’’ with
free hinges as a function of x � Lj��j� with �� � �� �c for
a series of densities � indicated in the graph. Note that for finite
systems the shear modulus is also nonzero below �c (lower
branch in the plot). The corresponding plot for stiff hinges is
similar, but exhibits a different �c � 5:71 (see text).
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��� �c��
�2. Such a linear regime has also been found in

a series of studies on random fiber networks [20]. It is by
now well established that the elastic modulus in this
regime can be described quantitatively in terms of effec-
tive medium models [21]. Hence, in the high line density
regime the network behaves as a homogeneously elastic
medium, dominated by the compressional modulus of the
individual filaments. As a consequence, local deforma-
tions follow a macroscopic shear in an affine way. This
has to be contrasted with the elastic behavior for slender
rods with low aspect ratios (� 	 10�5 for the higher
densities), where bending becomes the softer mode. We
find an extended plateau region, which broadens signifi-
cantly with lowering the line density, where the shear
modulus becomes completely independent of kcomp�‘� �
��2kbend�‘� [19]. This strongly suggests that in this re-
gime the macroscopic elasticity of the network is domi-
nated by the bending stiffness of the filaments. This
conclusion is corroborated by the observation that almost
all of the energy stored in the deformed network is ac-
counted for by transverse deformation of the rods (com-
pare Fig. 1). Another remarkable feature of the plateau
regime is the strong dependence of the shear modulus on
line density. We find G� ��� �c�

�0
with a rather large

exponent �0 	6:7. Figure 3 suggests the crossover scaling
ansatz

G � ��� �c�
�0
g���� �c�

�0
� � 0��0=�0 ~gg��=0� ; (2)

where we have defined a new length scale 0 �
��� �c�

��0
. For this ansatz to reduce to the modulus

expected in the affine region, the scaling function g�x�
needs to scale as g�x� � x�2 for x � 1 and the exponents
need to obey the scaling relation �0 � 2�0 � 1. In the
plateau regime, g�x� is expected to be constant. As shown
in Fig. 4, we obtain an excellent scaling collapse for over
almost 8 orders of magnitude in the scaling variable x �
�=0 using �0 � 2:83 or equivalently �0 � 6:67 and the
critical line density �c 	 5:71 associated with connectiv-
ity percolation. Additionally, the scaling function g�x�
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FIG. 3 (color). Double logarithmic plot of the shear modulus
G as a function of � for fixed kbend�‘�. Data shown for free
hinges.
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FIG. 4 (color). Scaling plot of the shear modulus for free
hinges for a series of densities above � � 15 indicated in the
graph (same data as in Fig. 3). Data collapse to the crossover
scaling form, Eq. (2), is obtained with �0 � 2:83. Note that
here and in all other figures the unit of length is ‘ and the unit
of the shear modulus G is �=‘3.
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displays the expected behavior. Meeting both of these
requirements is highly nontrivial, and gives strong evi-
dence for the anomalous scaling law in Eq. (2).

The existence of such a broad scaling regime far from
the percolation threshold is a surprising and intriguing
feature of stiff polymer networks. Its physical origin is
distinct from the critical scaling regime, and governed by
a new length scale 0. While the geometrical significance
of 0 is yet unclear, one may speculate that the anomalous
scaling behavior is a subtle consequence of the interplay
between quenched randomness of the network structure
and long-range correlation effects induced by the stiff-
ness of the filaments. An immediate consequence of the
scaling form, Eq. (2), is the existence of a crossover line
density �cross scaling as ‘�cross � ��1=�0

, where we have
reintroduced units of length ‘. This implies that increas-
ing filament length at constant line density drives the
system towards the affine regime, in accord with Ref. [18].

While these results for an idealized two-dimensional
model are certainly not straightforwardly applicable to
three-dimensional cytoskeletal networks, one may still
try to get an idea of the scales involved. We expect that
network densities can be compared roughly by using the
average distance ‘c between intersections as a measure: A
cytoskeletal network might have ‘c 	 0:1�m with fila-
ment lengths of 2�m and filament radii of 4 nm. These
values correspond to a two-dimensional line density of
�	20 and an aspect ratio of �	0:002, which would
place a typical actin network in the bending dominated
intermediate regime at T � 0. For T > 0, a faithful treat-
ment of thermal fluctuations of the network would re-
quire the inclusion of the polymer configuration as
additional degrees of freedom. However, in a first approxi-
mation, the fluctuations of the polymers between cross-
links could be represented by replacing the longitudinal
108103-4
force constant kcomp used in the present analysis by the
thermal linear response coefficient kk discussed in the
introduction augmented by numerical prefactors to reflect
the local boundary conditions. As the dependence of kk on
the random distance between cross-links is quite different
from that of kcomp, this may well lead to different scaling
behavior. Additional contributions to the modulus are
expected when thermal fluctuation of the cross-link po-
sitions are taken into account [22]. Understanding the
full complexity of cytoskeletal networks certainly merits
further theoretical and experimental work. Future inves-
tigations may among many other questions want to ad-
dress three-dimensional systems, polydispersity, thermal
fluctuations, or even the kinetics of the cross-linking
molecules.
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