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Multiparticle Entanglement Purification for Graph States
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We introduce a class of multiparticle entanglement purification protocols that allow us to distill a
large class of entangled states. These include cluster states, Greenberger-Horne-Zeilinger states, and
various error correction codes all of which belong to the class of two-colorable graph states. We analyze
these schemes under realistic conditions and observe that they are scalable; i.e., the threshold value for
imperfect local operations does not depend on the number of parties for many of these states. When
compared to schemes based on bipartite entanglement purification, the protocol is more efficient and the
achievable quality of the purified states is larger. As an application we discuss an experimental
realization of the protocol in optical lattices which allows one to purify cluster states.
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quantum operations is extremely small (of the order of close by describing how MEPP could be implemented
Entangled states of multipartite systems are expected
to play a significant role for applications in quan-
tum computation and quantum communication. Quan-
tum error-correcting codes, as the most prominent
example, are highly entangled states which are used to
encode quantum information and to protect it against the
damaging effects of decoherence. It has been shown that
similar entangled states may be used in multiparty com-
munication scenarios beyond teleportation and quantum
key distribution [1], such as secret sharing or secure
function evaluation [2,3], but also in more practical ap-
plications such as the improvement of existing frequency
standards [4]. In the context of quantum computation,
specific multipartite entangled states—the so-called
cluster states [5]—have even been shown to constitute a
universal resource for measurement-based quantum com-
putation [6]. These states can be created, e.g., via an Ising
interaction between neighboring particles on a lattice. A
specific realization of such a system is based on neutral
atoms in an optical lattice where, starting from a Mott-
insulator state [7], cluster states could be created by a
simple interferometric process [5,8].

When talking about entanglement, it is mandatory
to consider the effect of decoherence. Finite temperature
(in the case of interacting particles) or a noisy commu-
nication channel (in the case of distributed quantum
systems) lead to decoherence in the state space of the
information carriers, with a rate that increases typically
in proportion with the number of particles. Therefore only
mixed states rather than pure states will be available, and
the achievable fidelity is expected to decrease exponen-
tially both with time and with the size of the system. It is
thus not clear whether an entangled state of a large
number of particles can be created and maintained in
practice.

Standard methods have been developed to stabilize
quantum states against the detrimental effects of deco-
herence and noise. Quantum error correction is one gen-
eral method, but the acceptable noise level for the
0031-9007=03=91(10)=107903(4)$20.00 
10�4) [9]. Entanglement purification [10,11] is an alter-
native, but protocols exist only for the purification of a
special type of states, namely, states which are equiva-
lent, up to local unitary operations, to the so-called ‘‘cat’’
states j0i�N � j1i�N [10–13]. Furthermore, it needs to be
investigated whether these protocols are at all applicable
under realistic conditions. While in the bipartite case
certain entanglement purification protocols turn out to
be remarkably robust against the influence of imperfect
local operations—allowing for threshold values at the
order of several percent [14]—it is not clear whether this
is also true in the multipartite case. In particular, it is not
known how the threshold for the required precision of
local control operations scales with the size of the system,
a crucial question if one wants to establish and maintain
quantum entanglement in larger systems.

In this Letter, we introduce a class of entanglement
purification protocols, which can be used to purify a large
class of multipartite entangled states (MES), in particu-
lar, all two-colorable graph states. These states include,
for example, various quantum error-correcting codes
[15], the generalized GHZ states (or cat states), and the
cluster states, all of which are resources for the applica-
tions mentioned above. We analyze these protocols under
realistic conditions, i.e., when the local operations re-
quired in the purification process are imperfect. We find
the following: (i) The value of the purification threshold,
i.e., the acceptable noise level for local operations
under which the protocol still purifies, does not depend
on the number of particles, but is influenced by the
maximal degree of the graph associated with the state.
(ii) The described multiparticle entanglement purification
protocols (MEPP) are generally not only more efficient
than any method based on bipartite entanglement purifi-
cation protocols (BEPP), but in the case of imperfect
local operations the achievable fidelity is even higher.
(iii) The entanglement of the purified multipartite states
is private [16], thus providing a secure resource for appli-
cations in multiparty communication scenarios [3]. We
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experimentally in optical lattices, allowing one to in-
crease the fidelity of cluster states.

We start out by introducing two-colorable graph states
and purification protocols which allow one to purify all
states of this kind. Consider a graph G � �V; E� which is a
set of vertices V connected in a specific way by edges E
specifying the neighborhood relation between vertices.
With this graph we associated N � jVj commuting
correlation operators Kj � 	�j�

x
Q

fk;jg2E	
�k�
z . The joint

eigenstates of Kj, j�12...N
i, j 2 f0; 1g, the graph

states associated with G, fulfill the eigenvalue equa-
tion Kjj�12...N

i � ��1�j j�12...N
i 8 j. Note that

fj�12...N
igG form a basis in H � �C2��N . We restrict

our attention to two-colorable graphs that are graphs for
which a partition of the vertices into two disjoint sets
VA [ VB � V exists such that no vertices within a set are
connected by edges. The states arising from such two-
colorable graphs, which we call two-colorable graph
states (TCGS), include various interesting MES, ranging
from N-particle Greenberger-Horne-Zeilinger (GHZ)
states over codewords for quantum error correction codes
to cluster states. In what follows, we will introduce pro-
tocols which allow one to purify arbitrary TCGS. That is,
givenM copies of an arbitraryN-partite mixed state �, we
establish for each two-colorable graph G a local protocol
which is capable of creating the pure state j�~00iG as output
state, provided the initial state � fulfills certain require-
ments (e.g., has sufficiently high fidelity with respect
to j�~00iG).

Let us consider an arbitrary but fixed two-colorable
graph G with vertices V � VA [ VB, NA � jVAj, NB �
jVBj, and N � NA � NB spatially distinct parties each
holding one of the N particles belonging to a general
mixed state �. One can depolarize the state � to a state
�G which is diagonal in the graph-state basis
fj�12...N

igG without changing the diagonal elements
by probabilistically applying the local operations corre-
sponding to the operators Kj [17]. That is, without loss of
generality we can consider mixed states of the form

�G �
X

~A; ~B

� ~A; ~B
j� ~A; ~B

ih� ~A; ~B
j; (1)

where we introduced the multi-indices ~A; ~B with, e.g.,
~A � i1i2 . . .iNA

indicating all vertices in the set VA.
We now introduce two protocols P1, P2 acting on two
identical copies �1 � �2 � �G, �12 � �1 � �2. In proto-
col P1, all parties which belong to set VA [VB] apply local
controlled-NOT (CNOT) operations [18] to their particles,
with the particle belonging to �1 [�2] as source, �2 [�1]
as target. From the eigenvalue equations for j� ~A; ~B

i
follows that the action of the local CNOT operations is
given by

j� ~A; ~B
ij� ~��A; ~��Bi ! j� ~A; ~B� ~��Bij� ~��A� ~A; ~��Bi; (2)

where ~A � ~��A denotes bitwise addition modulo 2. For
instance, if ~A � 135, ~A � ~��A � 1 � �1; 3 �
�3; 5 � �5. All particles of �2 belonging to set VA [VB]
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are then measured in the eigenbasis of 	x [	z], respec-
tively, yielding results ��1��j [��1��k] with �j; �k 2
f0; 1g. The first state is kept only if the measurement
outcomes fulfill ��j �

P
fk;jg2E�k�mod 2 � 0 8 j which

implies ~A � ~��A � ~00. Equation (2) makes it evident that
in this procedure information about the first state �1 —
encoded into ~A; ~B —is transferred to the second state
�2 and revealed by the measurement. This is in analogy to
the standard recurrence protocols [10–13], and it is the
key point to purifying mixed states.

The resulting state ~�� after this procedure is again
diagonal in the graph-state basis, with new coefficients
~�� ~��A; ~��B

�
P

f� ~��B; ~B�j ~��B� ~B� ~��Bg
1
2K � ~��A; ~��B� ~��A; ~B

, where K is a

normalization constant such that tr�~��� � 1. In the proto-
col P2, the role of sets VA and VB is interchanged, which
leads to ~��0

~��A; ~��B
�

P
f� ~��A; ~A�j ~��A� ~A� ~��Ag

1
2K �~��A; ~��B

� ~A; ~��B
. The

total purification protocol corresponds to an iterative
application of subprotocols P1 and P2, always using
two identical copies of the multiparticle states obtained
in the previous round as input states. For GHZ states, this
protocol is equivalent to the one introduced in Ref. [12],
and further analyzed in Ref. [13], and may thus be viewed
as a generalization to the class of all TCGS.

To gain analytical insight into this procedure, we con-
sider the example of rank 2NA mixed states of the form
�A �

P
~A
� ~A;~00

j� ~A;~00
ih� ~A;~00

j. The application of proto-
col P1 leads to another state of this form with new
coefficients ~�� ~A;~00

� �2
~A;~00

=K and K �
P

~A
�2

~A;~00
. That

is, the largest coefficient is amplified with respect to the
other ones and iteration of the protocol allows one to
produce pure graph states. Consider, for instance, the
one parameter family �A�F� with �~00;~00 � F, � ~A;~00

�

�1� F�=�2NA � 1� for ~A � ~00, where F is the fidelity of
the desired state. Application of P1 preserves the struc-
ture of those states and leads to ~FF � F2=�F2 � �1� F�2=
�2NA � 1��. This map has ~FF � 1 as attracting a fixed point
for F � 1=2NA . In these examples, application of protocol
P1 alone is sufficient as only information about ~A has to
be extracted.

For general full rank mixed states, both P1 and P2 will
have to be applied in order to reveal information about ~A
[ ~B], respectively. While P1 increases the weight of co-
efficients �~00; ~B

, P2 amplifies coefficients � ~A;~00
, which

together leads to the amplification of �~00;~00 given the initial
fidelity is sufficiently high. The action of P1, P2 corre-
sponds to nonlinear mappings of a large number of inde-
pendent variables (in total 2N � 1), which makes an
analytic treatment of the purification protocol very diffi-
cult.We have, however, analyzed the protocol numerically
and found that it is indeed capable to purify noisy TCGS
arising from various kinds of noise. In the following, we
will concentrate on GHZ states and 1D cluster states. The
graph corresponding to the N-particle GHZ state is given
by VA � f1g, VB � f2; 3; . . . ; Ng with edges f1; kg, k 2 VB,
while 1D cluster states correspond to a graph where vertex
k is connected to vertex k� 1, 8 k, and sets VA [VB] are
107903-2
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formed by all odd [even] vertices, respectively. Our re-
sults are, however, not restricted to these specific graphs.

We consider noisy TCGS arising naturally in a multi-
partite scenario where each of the N particles constituting
j�~00i is subject to decoherence, arising, e.g., from sending
the particles through noisy quantum channels. We con-
sider depolarizing channels with noise parameter q,

E k� � q�� �1� q�=21k � trk���; (3)

where in this case the channel is acting on particle k. The
resulting multipartite state is of the form ��q� �
E1E2 . . . ENj�~00ih�~00j which we take as input states for
our MEPP. It turns out that the tolerable amount of white
noise per particle such that our MEPP can still be suc-
cessfully applied is for linear cluster states essentially
independent of the number N of particles, while for
GHZ states this value decreases exponentially with N
[see Fig. 1(a)]. This implies that, for the GHZ state, the
required quality of the channel over which particles are
distributed, such that the resulting state is still purifiable,
increases with N. Note that this different behavior is not
reflected in the minimum fidelity Fmin which in both
cases decreases exponentially [Fig. 1(a)]. We note that
for all states ��q� where q is larger than the threshold
value, the protocol successfully converges towards the
desired state j�~00i. For more general states, conditions
for convergence are difficult to determine due to the large
number of parameters, even though convergence itself can
straightforwardly be checked numerically. Also for noisy
states of the form ��x� � xj�~00ih�~00j � �1� x�=2N1, i.e.,
mixtures of the desired state with a completely depolar-
ized state, the situation is similar, i.e., Fmin decreases
exponentially with N.

Until now we have assumed that local operations—in
particular, CNOT operations—are perfect. In practice,
however, these operations as well as measurements will
be imperfect. We now investigate the influence of errors in
the local operations on the MEPP. We will consider a
simple error model where local two-qubit operations
are described by the completely positive map EUjk

� �
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FIG. 1. (a) Minimal value of fidelity Fmin� [�] and parame-
ter qmin� [*] for linear cluster states [GHZ states] for different
number of particles N and perfect local operations.
(b) Achievable fidelity of a linear cluster state with N � 4
using direct MEPP (solid line) and conservative upper bound
for methods based on BEPP (dashed line) for different errors in
local operations p.
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Ujk�EjEk��U
y
jk, where Ek; Ej are given by Eq. (3) with

error parameter p. That is, an imperfect operation is
described by first applying local white noise with proba-
bility (1� p) independently on the qubits, followed by
the perfect unitary operation. We have also investigated
more general error models, e.g., correlated white noise,
and errors in the measurement process, observing essen-
tially the same behavior as for this simple model.

We have investigated the dependence of the minimal
required fidelity and the maximal reachable fidelity for
linear cluster states of different lengths on the error
parameter p [see Fig. 2(a)] as well as the threshold value
pmin until our MEPP can be successfully applied
[Fig. 2(b)]. As can be seen from Fig. 2(b), pmin is almost
independent of the number of particles N, and it even
seems that for larger N the tolerable amount of noise per
operation is larger. For GHZ states, in contrast, the
threshold value pmin increases with N, i.e., the require-
ments to purify GHZ states with larger N are more
stringent. The qualitatively different behavior of pmin

for these two TCGS can be understood within a restricted
error model. We consider noisy operations where only
particles in VB are subjected to bit-flip errors— described
by the map ~EEk� � p�� �1� p�=2��� 	x�	x�—and
entanglement purification is performed by applying
protocol P1. For GHZ states we have that 	�kB�

x is equiva-
lent to phase flip errors in particle 1, 	A1

z 8 kB 2 VB as
can be seen from the eigenvalue equations, while
for closed linear cluster states 	�2k�

x corresponds to
	�2k�1�
z 	�2k�1�

z . Thus, for GHZ states, errors at N � 1
particles affect particle 1 and the errors accumulate. For
linear cluster states, however, each particle in VA is af-
fected only by errors at two other particles in VB, inde-
pendent of N. One can show analytically that even for
this restricted class of errors, for GHZ states pmin in-
creases exponentially with N, pmin � 1=21=�N�1�. For
linear cluster states one finds that for input states of the
form �A�F� and a fixed error rate, e.g., p � 0:8, one
application of the protocol P1 increase the fidelity F �
x� �1� x�=2N=2 in the range 2�0:33N � x � 2�0:009N

[17]. That is, for each N there exists a finite regime where
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FIG. 2 (color online). (a) Maximal reachable fidelity Fmax

and minimal required fidelity Fmin plotted against error pa-
rameter p (local operations) for density operators arising from
single-qubit white noise. Curves from top to bottom correspond
to linear cluster states with N � 2; 4; 6 particles. (b) Threshold
value for errors in local operations pmin for GHZ states (*) and
linear cluster states (�) with different number of particles N.
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entanglement purification is possible and the threshold
value pmin converges for large N towards pmin � 0:4938.

We have also performed numerical simulations for
various other two-colorable graphs corresponding, e.g.,
to 2D cluster states and simple Calderbank-Shor-Steane
(CSS) codes [15], observing a similar behavior as for
linear cluster states. Since graphs corresponding to a
concatenation of such CSS codes are also two-colorable
[17], our approach may be used to purify entire encoding
circuits used in fault tolerant quantum computation.
While in the general case the structure of the graph—in
particular, its maximum degree —influences the depen-
dence of the threshold value pmin of the corresponding
purification protocol, the exact dependence of pmin on the
graph is still an open problem.

Let us compare this MEPP with schemes based on
bipartite entanglement purification. By this we mean a
scheme which produces bipartite entangled states by
means of BEPP, which are then used to create a MES
by some means, e.g., by teleportation. Even for the best
known BEPP with respect to maximal reachable fidelity
under imperfect local operations—which is the protocol
introduced in Ref. [11]—and under the conservative as-
sumption that the local operations involved in the crea-
tion of multiparticle entangled states from (noisy)
entangled pairs are itself error free, the maximal reach-
able fidelity FMP

max for our MEPP is considerably larger
than the upper bound for methods based on BEPP, as can
be seen in Fig. 1(b). Note that the upper bound in the latter
case solely depends on the fixed point of the BEPP. This
shows that there are tasks that can be solved with multi-
lateral purification (i.e., the efficiency of the process is
nonzero) but not with bilateral purification (i.e., the effi-
ciency is zero), where the efficiency is given by the ratio of
surviving copies with the desired fidelity to the number of
initial copies (see Ref. [17] for details).

Finally, we propose an experimental realization of
MEPP with neutral atoms in optical lattices. We show
that MEPP can be used in such systems to increase the
fidelity of cluster states. In particular, we consider the
purification of 1D cluster states in a 2D lattice.
Remarkably, even if the same imperfect operations are
involved in the creation of the cluster state and in the
purification process, MEPP allows one to enhance the
achievable fidelity of the state [17]. For the experiment,
consider a two-dimensional N � N optical lattice filled
with one atom per lattice site. Internal states of the
atoms—which constitute the qubits—can be manipu-
lated by means of laser pulses. Interactions between
neighboring atoms take place, e.g., by state-selectively
shifting the lattice, leading to a state dependent colli-
sional phase arising from controlled cold collisions [19].
The interaction Hamiltonian describing a lattice shift in
the x direction is given by Hx � g�t�

P
�k;l��1� 	�k;l�

z �=2 �
�1� 	�k�1;l�

z �=2, where �k; l� labels the �x; y� coordinate of
the atom and g�t� is a time dependent coupling parameter.
Note that for

R
g�t�dt � %, such an interaction produces
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N copies of one-dimensional cluster states along the x
direction of the lattice when applied to states of the form
�j0i � j1i��N . These states can then be purified by using
lattice shifts along the y direction: By applying local
laser pulses to the individual atoms, the resulting inter-
action for

R
g�t�dt � % can be converted into the proper

CNOToperations between pairs of atoms, thereby realizing
(2). Using a total of two lattice shifts, this process can
even be parallelized such that N=2 pairs of cluster states
are purified simultaneously. The resulting states after a
successful measurement can further be purified by apply-
ing protocol P2 in a similar way.

In this Letter we have introduced entanglement purifi-
cation protocols which are capable of purifying a wide
range of multiparticle states, namely, all TCGS. In the
case of noisy operations, these multiparticle entanglement
purification protocols are not only remarkably robust, but
they allow one to reach higher fidelities than known
schemes based on bipartite purification. We also found
that for cluster states the threshold value for imperfect
local operations is independent of the number of particles.
Our results are a step towards practical applications based
on multiparticle entangled states.
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