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Entanglement of Formation for Symmetric Gaussian States
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We show that for a fixed amount of entanglement, two-mode squeezed states are those that maximize
Einstein-Podolsky-Rosen–like correlations. We use this fact to determine the entanglement of for-
mation for all symmetric Gaussian states corresponding to two modes. This is the first instance in which
this measure has been determined for genuine continuous variable systems.

DOI: 10.1103/PhysRevLett.91.107901 PACS numbers: 03.67.Mn, 03.65.Ud, 42.50.Dv
they minimize such a relation for position and momen-
tum operators.

state considered by Einstein, Podolsky, and Rosen [16].
For any state, 
� �< 1 implies the existence of such
One of the main tasks of quantum information theory
is to quantify the entanglement and the quantum corre-
lations that quantum states possess. For that, several
entanglement measures have been introduced in recent
years [1]. In particular, two such measures stand out
for their well-defined physical meaning: the entangle-
ment of distillation and of formation (and the correspond-
ing asymptotic generalization, the entanglement cost) [2].
They quantify the entanglement of a state in terms of the
pure state entanglement that can be distilled out of it [3]
and the one that is needed to prepare it [4], respectively.

Despite a considerable effort, for the moment we can
evaluate only the entanglement of formation (EOF) or the
entanglement of distillation for a few sets of mixed states.
The reason is that these quantities are defined [2] in terms
of an optimization problem which is extremely difficult to
handle analytically. Despite this fact, in a remarkable
work Wootters [5] managed to derive an analytical ex-
pression for the EOF for all two-qubit states. The EOF has
also been determined for highly symmetric states (iso-
tropic states [6] and Werner states [7]). These expressions
are important theoretical tools. From a more practical
point of view, they can be applied to quantify the entan-
glement created in current experiments as well as to
compare the capability of different experimental setups.
For low dimensional systems without symmetries, one
can still use numerical methods to determine the EOF [8],
although they are often not very efficient. For infinite-
dimensional systems, however, a numerical approach is
not feasible.

Among all quantum states in infinite-dimensional sys-
tems, Gaussian states play an important role in quantum
information. From the experimental point of view, they
can be created relatively easily [9], and one can use them
for quantum cryptography [10] and quantum teleporta-
tion [11,12]. On the theoretical side, separability [13] and
distillability [14] criteria for bipartite systems have been
fully developed. Moreover, pure Gaussian states are in-
timately related to Heisenberg’s uncertainty relation since
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In this work we determine the EOF of all symmetric
Gaussian states of two modes. Those states arise naturally
in several experimental contexts: for example, when the
two output beams of a parametric down converter are sent
through optical fibers [9] or in atomic ensembles interact-
ing with light [15]. In order to determine the EOF, we
connect the entanglement of pure states, as measured by
the von Neumann entropy of the restriction, with the type
of correlations established by Einstein, Podolsky and
Rosen (EPR) in their seminal paper [16]. In fact, we
show that two-mode squeezed states [17] play a very
special role in this relation, since they are the least
entangled states for a given correlation of this type.
This provides a new characterization of two-mode
squeezed states. Finally, we show that the decomposition
that leads to the EOF is a decomposition in terms of
Gaussian states.

We consider two modes, A and B, with corresponding
Hilbert space H � H A �H B and canonical operators
XA;B and PA;B. The two-mode squeezed states have the
form

j�s�r�i :�
1

cosh�r�

X1
N�0

tanhN�r�jNiA � jNiB; (1)

where r > 0 is the squeezing parameter and jNi denotes
the Nth Fock state, i.e., ayajNiA � NjNiA, bybjNiB �
NjNiB, where a � �XA 	 iPA�=

���
2

p
and b � �XB 	

iPB�=
���
2

p
are annihilation operators.

In the following, we will denote by  an arbitrary
normalized state in H . We define its EPR uncertainty
as follows:


� � :� min

�
1;
1

2
�
2

 �XA � XB� 	
2
 �PA 	 PB�


�
; (2)

where, as usual, 
2
 �X� :� hX jX i � h jXj i2, setting


2
 �X� � 1 if  is not in the domain of X. Clearly,


� � 2 �0; 1
. This quantity measures the degree of non-
local correlations, and would be zero for the idealized
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nonlocal correlations. Note that this condition is met only
if at least one of the uncertainties of �XA � XB�=

���
2

p
or

�PA 	 PB�=
���
2

p
lies below 1 (the standard quantum limit).

This implies that the corresponding states must possess a
certain squeezing. In fact, the two-mode squeezed states
(1) are standard examples of states displaying these cor-
relations since


��s�r�
 � e�2r < 1: (3)

Any value of 
 2 �0; 1� is achieved by the two-mode
squeezed state with squeezing parameter

r
 :� �
1

2
ln�
�: (4)

The EPR uncertainty of a given state  is certainly
related to its entanglement. For pure states this last prop-
erty is uniquely quantified by the entropy of entangle-
ment, E� �, which can be determined as follows. Let us
write the Schmidt decomposition of  as [18]

j i �
X1
N�0

cNjuNiA � jvNiB; (5)

fuNg and fvNg are orthonormal bases in H A;B, respec-
tively, and c � �c0; c1; . . .� 2 C, where

C :� f c 2 l2R j kck � 1; cN � cN	1 � 0 8 N g:

Then [19]

E� � � e�c� :� �
X1
N�0

c2N log�c2N�: (6)

Note that this quantity can be infinite for some states. For
the two-mode squeezed states (1) we have

E��s�r�
 � cosh2�r� log�cosh2�r�
� sinh2�r� log�sinh2�r�
:

With the above definitions we can state the special role
that two-mode squeezed states play in relation with EPR
correlations and entanglement:

Proposition 1: For all  2 H , E� � � E��s�r
� ��
.
In order to give a clear interpretation of this result, we

reformulate it in two equivalent forms: (i) for any given

 2 �0; 1�, E��s�r
�
 � inf fE� �g with  fulfilling

� � � 
; (ii) for any given E 2 �0;1�, 
��s�r�
 �
inf f
� �g with  fulfilling E� � � E and r such that
E��s�r�
 � E. Note that the equivalence of this last for-
mulation is ensured by the fact that E��s�r�
 and

��s�r�
 are monotonically increasing and decreasing
functions of r, respectively. The first statement character-
izes two-mode squeezed states as the cheapest (regarding
entanglement) to achieve a prescribed EPR uncertainty.
The second statement characterizes two-mode squeezed
states as those states with maximal EPR correlations
(minimal 
) for any given value of the entanglement.

In order to prove Proposition 1 we introduce two lem-
mas and the following definition. Given c 2 C we define
107901-2
� �c� :� 1	 2
X1
N�0

�c2N � cNcN�1�N: (7)

We have ��c� � 1 and ��c� � 
� � whenever juNi �
jvNi � jNi [cf. (5)].

Lemma 1: For all  with Schmidt decomposition (5),

� � � ��c�.

Proof: Since ��c� � 1 we can restrict ourselves to  
with 
� �< 1. Without loss of generality we can assume
that h jaj i � h jbj i � 0. Otherwise we can always
find  0 fulfilling this condition, with the same Schmidt
coefficients as  and with 
� 0� � 
� � [20]. We have


� � � 1	
X1
N�0

c2N�huNja
yajuNi 	 hvNjb

ybjvNi�

�
X1

N;M�0

cNcM�huNjajuMihvNjbjvMi 	 c:c:�

� min�Z�u�; Z�v�
;

where

Z�u� :� 1	 2
X1
N�0

c2NhuNja
yajuNi

� 2
X1

N;M�0

cNcMjhuNja
yjuMij

2:

Without loss of generality let us assume that
min�Z�u�; Z�v�
 � Z�u� �: Z. We can rewrite it as
Z �

P
1
N�0

P
1
M�N	1�cN � cM�2XN;M, where XN;M :�

jhuNjayjuMij2 	 jhuMjayjuNij2. Now, since c 2 C we
can write �cN � cM�2 �

P
M�1
R�N�cR � cR	1�

2, for M �
N 	 1, so that

Z �
X1
R�0

�cR � cR	1�
2
XR
N�0

X1
M�R	1

XN;M

�
X1
R�0

�cR � cR	1�
2�R	 1	 2YR�;

where

YR :�
XR
N�0

�
huNja

y
NaNjuNi �

XR
0�M�N

jhuNjayjuMij2
�
;

with aN :� a� huNjajuNi. Now, using that uN ? uM for
N � M we have huNjayjuMi � huNja

y
NjuMi which, to-

gether with
P
R
0�M�N jhuNja

y
NjuMij

2 � huNja
y
NaNjuNi,

yields that YR � 0 for all R and therefore


� � � Z �
X1
R�0

�cR � cR	1�
2�R	 1� � ��c�: �

Lemma 1 indicates that for a given set of Schmidt
coefficients c 2 C EPR correlations are maximized if
the Schmidt vectors are chosen to be Fock states in the
107901-2
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right order, i.e., juNi � jvNi � jNi. Next we will show
that for fixed 
, the choice of Schmidt coefficients min-
imizing the entropy of entanglement is given by those of a
two-mode squeezed state. Since the entropy and the EPR
entanglement are explicitly known functionals e�c� and
��c� on the sequences c 2 C, this is a classical con-
strained variational problem.

Lemma 2: For 
 2 �0; 1�, and any sequence c 2 C
with ��c� � 
, we have e�c� � e�c
� � E��s�r
�
,
where c
N / exp��Nr
� is the unique geometric sequence
in C with ��c
� � 
.

Sketch of proof: We apply the method of Lagrange
multipliers for constrained minima to the infinitely
many variables c0; c1; . . . , leaving aside the technicalities
of making this rigorous. These involve restricting c to
finite dimensional spaces, then letting the dimension of
the space tend to infinity, and controlling the attained
minima in this limit.

With a choice of Lagrange multipliers � and � > 0,
designed to simplify the expressions to come, we are thus
looking for stationary values c 2 C of the functional

F�c;�;�� :�e�c�	
�

2ln�2�
���c��

	

��	1�

ln�2�
�kck�1�:

We obtain

2cN�N�	�� ln�c2N�
 � ��NcN�1 	 �N 	 1�cN	1
;

(8)

where we have defined c�1 � 1. One can immediately see
that cN > 0 and thus we can divide (8) by cN and subtract
the same expression but for N 	 1. Defining xN :�
cN	1=cN �: e�2rN 2 �0; 1
 for N � 0; 1; . . . and writing
� � 2r=sinh2�r� for some r > 0, we find

xN	1 � xN � AN � BN; (9)

where N � 0; 1; . . . and

AN �
4

N 	 2

�
sinh2�rN� �

rN
r
sinh2�r�

�
; (10a)

BN �
N

N 	 2

�
1

xN
�

1

xN�1

�
: (10b)

If we fix r > 0 and x0, we have three possibilities.
(i) x0 < e�2r. Then, by induction, xN is decreasing, and
will reach some xN < 0 for finite N, which is impossible.
(ii) x0 > e�2r. Then xN is increasing, and the normaliza-
tion condition for c cannot be fulfilled. Hence we must
have the third possibility, (iii) x0 � e�2r, which implies
that xN � e�2r for all N. Hence cN is a geometric se-
quence / exp��2Nr�. �

With the help of Lemmas 1 and 2 we are now in the
position of proving Proposition 1.

Proof of Proposition 1: Given  2 H , if 
��� � 1
then it is trivial. Otherwise, using (6) and Lemma 2 we
have
107901-3
E� � � e�c� � E��s�r��c��
 � E��s�r
� ��
; (11)

where for the last inequality we have used r
� � � r��c�
[which follows from Lemma 1 and (3)] and the fact that
E��s�r�
 increases monotonically with r. �

In the following, we will apply Proposition 1 to deter-
mine the EOF of symmetric Gaussian states of two
modes. For a given density operator, �, we define its
covariance matrix (CM)  as usual,

 ij :� tr��RiRj 	 RjRi�"
 � 2tr�Ri"�tr�Rj"�; (12)

where fRi; i � 1; . . . ; 4g :� fXA; PA; XB; PBg. Up to local
unitary operations, it can always be written in the stan-
dard form [13]

 �

0
BB@
n 0 kx 0
0 n 0 �kp
kx 0 m 0
0 �kp 0 m

1
CCA: (13)

We will concentrate here on symmetric states, i.e., those
which are invariant under exchange of subindices A and B
and therefore fulfilling m � n. Without loss of generality
we can choose kx � kp � 0. In this case,  is a CM iff
n2 � k2x � 1 and describes an entangled state iff 1 > �n�
kx��n� kp� [13]. Next we apply local (unitary) squeezing
transformations to yield the state in a more appropriate
form without changing its entanglement properties. In the
Heisenberg picture, the transformation multiplies (di-
vides) XA;B (PA;B) by ��n� kp�=�n� kx�


1=4. A simple
calculation gives


��� �
�����������������������������������
�n� kx��n� kp�

q
�: '; (14)

where 
��� is defined analogously as in (2).
Our goal is to determine the EOF of �. This is defined

as EF��� :� infDE�D�, where the infimum is taken with
respect to all sets of the form D � fpk;  kg which give
rise to a decomposition of �, i.e.,

� �
X
k

pkj kih kj; (15)

where the  k 2 H are normalized and pk � 0. Note that
the sum can run over continuous indices. For the setD we
define

E �D� :�
X
k

pkE� k�: (16)

We call the set D a decomposition of �. A particular
decomposition D0 of � is defined through

� /
Z

R4
d*W�*�j�s�r'�ih�s�r'�jW�*�ye�1=4*T � � '��1*;

where W�*� � ei*
TR is the Weyl displacement operator

and  ' �  is the CM of the two-mode squeezed state
107901-3
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(1) with squeezing parameter r'. Since W�-� are local
unitary operators, we have E�D0� � E��s�r'�
.

We also introduce the auxiliary function f:�0; 1
 !
�0;1�,

f�
� � c	�
� log�c	�
�
 � c��
� log�c��
�
; (17)

where c��
� :� �
�1=2 �
1=2�2=4. One can readily
show that f is a convex and decreasing function of 

and that

E��s�r
�
 � f�
�: (18)

Proposition 2: EF��� � f�
�����������������������������������
�n� kx��n� kp�

q

.

Proof: We just have to prove that for any decomposi-
tion D, E�D� � f�'�, where ' is given in (14), since the
decomposition D0 already achieves this value, i.e.,
E�D0� � E��s�r'�
 � f�'� [cf. Eq. (18)]. For any decom-
position we have

E�D� �
X
k

pkf�
� k�
 � f
�X

k

pk
� k�
�
� f�'�:

The first inequality is a consequence of Proposition 1 and
(18). The second inequality is due to the convexity of f.
Finally, the last inequality is a consequence of the fact
that ' �

P
pk
� k� (which can be easily checked by

using the Cauchy-Schwarz inequality) together with the
fact that f is a decreasing function of its argument. �

In summary, we have determined the EOF of symmet-
ric Gaussian states by establishing a connection between
EPR–like correlations and the entanglement of a state.
The result implies that the measured quantities in some of
the recent experiments dealing with atoms [15] and pho-
tons [21] not only qualify entanglement but also quantify
it. We expect that the methods introduced here will allow
one to determine the EOF and other properties of more
general Gaussian states. The optimal decomposition D0

that gives rise to the EOF is a mixture of Gaussian pure
states, which means that those states are the cheapest
ones in terms of entanglement to produce symmetric
Gaussian states. Thus, it is tempting to conjecture that
this is also true for all Gaussian states. Finally, the results
presented here provide a new characterization of two-
mode squeezed states as those states which achieve a
maximal EPR–like correlation for a given value of the
present entanglement.
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