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Entrainment of a Spatially Extended Nonlinear Structure under Selective Forcing
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The response of a nonlinear state to a variable forcing periodic in space is studied in an extended
dynamical system consisting of a liquid crystal layer driven to convection. Both the statics and the
dynamics of the entrainment and the locking effects are analyzed. The dynamics of the evolution are
controlled by topological singularities that allow a diffusion of the phase. The mechanisms involved are
related to the role of the defects in systems undergoing spontaneous symmetry breakings.
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The properties of a dynamical system can be fully and
accurately determined if, in addition to measuring the
spontaneous (‘‘natural’’) response, one stimulates it by
means of an appropriate external forcing. When subjected
to an appropriate periodic forcing, a system with a natural
periodic solution evolves as to adjust its period to the
imposed one. This is the “entrainment effect’” first no-
ticed by Huyghens and studied by Van der Pol [1]. In its
final state, the system is said to lock onto the forcing, or in
the case of oscillators to be synchronized. Forcing has
since then been applied to characterize low-dimensional
systems such as mechanical, acoustic, or electrical oscil-
lators (pacemakers) [2]. In the case of higher dimensions
(pattern-forming systems), a forcing at fixed periodicity
values has been used in various fields: convection [3-5],
crystallization [6], Turing patterns [7], lasers [8], physi-
ology [9], etc. By varying at will the periodicity of the
forcing, one may be able to construct rapidly the stability
domains of the natural states of a given spatiotemporal
state and to study accurately through the dynamics, the
mechanism of entrainment.

We present results on the response of a spatially ex-
tended nonlinear state of convection in a liquid crystal,
forced by an external periodic pattern with variable ge-
ometry. The mechanisms and the main features of this
response are also interpreted and reproduced in the frame
of an appropriate Landau-Ginzburg equation.

The experimental dynamical system is the convection
of a thin layer (thickness d = 20 pum) of a nematic liquid
crystal inserted between glass plates coated with semi-
transparent electrodes. The molecules of the nematic are
made parallel to the plates (along X). In the classical
experiment, convection develops above some threshold
in the amplitude of an ac electric field applied trans-
versely to the layer. For the low frequency range of the
ac field, well-ordered convective rolls form an almost
homogeneous structure, free of defects, on very large
scales L (L = 1000d). As the amplitude is further in-
creased, nonlinear states develop in a sequence of sym-
metry breakings up to the full space-time chaos [10]. The
first convective state of normal rolls (NR), with wave
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vector 130 = (ko, 0) becomes unstable against the oblique
rolls (OR), with wave vectors kog = (k,, =k,) which
break the continuous invariance along the NR axis di-
rection y. It is thus composed of two variants, i.e., do-
mains symmetrically tilted by ®£6 over y. It has been
shown experimentally that, in the natural evolution of
OR, only the angle changes significantly as a function of
the control parameter [11]. In order to illustrate the tech-
nique in a fully nonlinear case, we shall force the angle of
a spontaneous domain of this OR by coupling it to a
similar external pattern with a variable angle. The cou-
pling is realized by interposing between one electrode
and the liquid crystal a photoconductive layer, on which
the image of a periodic pattern is sent in monochromatic
light (Fig. 1). We use a homemade layer of carbon-doped
amorphous hydrogenated silicium (C-a-Si:H) 10 um
thick [12].

A mask made of a periodical array of black and trans-
parent stripes, with period A, = 27/k/, is imaged on the
sample by a laser source (He-Ne, 35 mW). The local
electric field inside the nematic bulk is then spatially
modulated in amplitude and the modulation depth is
directly related to the light density on the a-Si:H layer.
The spatial period of the ac field modulation is modified
by varying the optical magnification of the mask image.
The voltage applied on the electrodes being V,, the forc-
ing amplitude in the bulk is written as V(x,y) = V, +
8V expi(kyx + kg,y). The angle of the imposed pattern
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FIG. 1. Principle of forcing by an optical field spatially
modulated by a mask. This field induces a spatial variation of
the ac electric field in the bulk, which couples to the initial
mode of convection.
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FIG. 2. Entrainment of the initial state kOR at angle fpg (a), forced by a pattern kf with angle 6, (b). Periodic discommensura-

tions are created at |8k| = ka

with respect to the y axis is 6, = arctan(ks,/k;,). In
the absence of any forcing, the reduced control parame-
ter would be & = (V2 — V2)/V2, where V, is the thresh-
old value. In the presence of a forcing, the global
reduced constraint may be written as e(x,y) = gy +
Seexpilky x + kg, y), where gy = (V3§ + 8V? — V2)/V?
is the mean reduced constraint, and & = V,, 8V/V? is a
measure of the modulation amplitude. The value Vj is
determined experimentally by measuring the thresholds
in the absence of spatial modulation and under a cali-
brated homogeneous light intensity.

Now g is set slightly above threshold (g; = 0.1), and
the initial state is a monodomain of one variant EOR at 6.
of the OR. The forcing wave vector will be varied by only
its angle 6, its modulus keeping a constant value |kf| =
|korl. The initial OR state is here a domain of angle
Oor = —23.3°. The initial forcing angle 6, = —90° is
incremented by steps of about 5°. The basic state remains
almost stable for a large range in the forcing angle until
0y~ —30° where the entrainment takes place. There,
after a step has been applied, the new initial state be-
comes (within 0.1 sec), first, unstable against a new
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FIG. 3. Entrainment range for an initial variant kOR forced by
kf, with |kog| = |kf| for an amplitude 6& = 0.2 (only the angle
0 is varied). The angle of the product state 6, “locks” to the
forcing only within a limited range (gray area). On both sides
and within the dashed vertical lines, the initial state is weakly
modulated. In the central part an unlocking occurs, where the
two initial symmetrical variants coexist, forming a zigzag
regular lattice.
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kORl (c) allowing a rotation (white arrows) by diffusion of the phase inside the domains between
the singular lines (dashed lines), up to the uniform final state locked at 6,

=0, (d).

periodic mode of long-wavelength A = 27/8k analo-
gous to the beating mode in forced oscillators, which
develops an array of singular lines along the rolls axis
[Fig. 2(¢)]. Next, a slow rotation of the pattern of duration
= 1 sec, orients the initial state kor by a phase slippage
towards the direction of the forcing pattern ky. When the
final angle is reached, the long-wavelength mode rapidly
fades out within a short time (< 0.2 sec). This is the well-
known locking effect [1]. After a delay of =~ 15 min (much
greater than any characteristic time) following each step,
the forced state is in equilibrium. That final state is then
used as a new initial state for the next step. The same
experiment is repeated in sequence, and the resulting (the
product) angle 6, = arctan(k,,/k,,), where k, is the
resulting wave vector, is plotted against the forcing angle
0 (Fig. 3). The range over which 6, = 6 is the entrain-
ment or locking range (Fig. 3). On both sides outside this
locking range, the structure shows stationary periodic
undulations which are due to simple modulation by the
forcing (i.e., with period close to |8k|). The whole range,
delimited by vertical dashed lines in Fig. 3, is contained
inside the experimental marginal stability domain deter-
mined also by this forcing technique [12]. An additional
novel effect occurs around 6, = 0, where the locking
becomes suddenly ineffective. There, the final angle 6,
decreases towards the natural value 6, (here 6, =~ 22°)
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FIG. 4. Entrainment domain formed by two ‘“locking
tongues” as a function of the forcing amplitude de, for gy =
0.1. Around the angle zero, the final state is the zigzag lattice
made of the two initial variants, periodic along y. The hori-
zontal dashed line corresponds to the value of 6¢ used in Fig. 3.
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Entrainment of the wave-vector direction of the initial state (a) under a spatial forcing (b) calculated by the model. The

evolution is mediated by a periodic array of phase discommensurations (c), towards the uniform final state (d) as in Fig. 2.

and crosses the value zero at 6 = 0. In this small range,
over 5°, the final structure is in fact a regular array made
of alternate OR (zigzag), and with wave vector along y
equal to 8k/2. We attribute this effect to the ‘“hidden”
homogeneous mode associated with the n, component of
the director n specific to the OR state in a nematic
[11,13], which couples to the angle 6 through the n,
component. Those two n components act in an opposite
way; hence, when 6 is close to zero the high value of n,
opposes any subsequent variation of ¢, and the forcing
becomes ineffective.

By measuring the locking range for increasing values
of the forcing amplitude Se, one obtains the “‘locking
domain” (Fig. 4) [2,14].

Because the OR state is composed of two variants, this
locking domain is composed of two parts, with the typi-
cal shape of ““locking tongue.” It is not symmetrical here,
its extension being smaller inside the +6 region. This
asymmetry is due to the counteraction of the n, homoge-
neous mode. In effect, in the evolution of the angle by
small steps, the initial sign of the n, mode is not inverted
when the angle of the final state changes its sign. Then the
final state is that of the opposite variant but with an
opposite sign for n, [12].

The starting model is a Ginzburg-Landau equation
with real coefficients, of a complex envelope A(7) =
|Al exp (i ¢). The local field amplitude has the form
u(¥) = A(¥) expl(ko 7) [15]. The forcing at kf with am-
plitude de is introduced as a spatial modulation of the
control parameter £ with wave vector g = ky — ko:

9,A ={e + deexpi(d; 7 — ¢)}A

+ (93 + Poj)A — 93A — |A]PA.

For P # 1, the model reflects the anisotropy of the system
and the fourth order spatial derivative ensures a two-
variant structure of OR (i.e., two symmetric orientations).
In the absence of forcing and for P > 0, the asymptotic
solution is the Normal Rolls state at k= (ko, 0), ie.,

Aexpz(ko %), and for P <0, the OR appear, at k =
kor = (ko + V¢) = (kg, £/—P/2). This equation has a
stationary solution A(x,y) ~ expi(g, - 7) leading to an
entrained pattern at ky. The real part of the forcing
term induces the beating mode at 8k = k; — kog. Thus,
the amplitude falls down periodically and the imaginary
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part produces a phase excursion along periodic lines at
6k. The details of the dynamics can appear only in the
numerical calculations.

We will apply the forcing only to the case P <0, as in
the experiment, starting from one oriented domain in the
steady state (kor) obtained for o6& = 0. The calculations
are made with periodic boundary conditions, using a
finite-difference scheme of fifth order in space to account
more accurately for the large space gradients, and a semi-
implicit scheme of order five in time. At fixed values of &
and Oe, a wave vector ky is applied and the resulting state
k, is measured. The asymptotic final state is reached
(within a 2% error) typically after ten time units for & ~
0.3 (10° steps). The evolution is here quite similar to the
experimental one: The large phase gradients present
along the periodic lines turn into linear singularities in
the phase. Those lines separate domains (domain walls)
inside which a slow rotation occurs to change the local
wave vector (Fig. 5) and fade out when the final angle is
reached (locking).

By varying the forcing angle 6, one obtains the en-
trainment for the basic structure over the stability do-
main of the OR. The result (Fig. 6) shows the locking
range where k, = kg, with a sharp border separating it
from the unlocked state k, = kj. This locking range is
symmetrical with respect to 6, = 0, because the model
does not include the “hidden symmetry.” The same ex-
periment is repeated for different values of the modula-
tion amplitude e, and for two sets of angles =6, in
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FIG. 6. Numerical range of entrainment for & = —0.05,
oe = 0.025 0.075, 0.3. Along the oblique line 6, = 6. The
0e = 0.3 case is similar to that of Fig. 3. The initial angle
is 8; = 26°.
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FIG. 7. Entrainment domains obtained numerically as a
function of the forcing amplitude de, for € = —0.05. The
horizontal lines refer to the values de used in Fig. 6.

order to calculate the locking domains. Figure 7 shows
the overlapping of the two locking domains as in the
experiment.

Both the experiment and the calculations show that,
under a selective forcing, a basic state may be entrained,
and within a limited range the initial pattern is locked to
the imposed state. The entrainment is realized in space by
two mechanisms acting in sequence. First, a new tran-
sient mode due to the lowest order nonlinearities (beat-
ing) superimposes on the basic state, producing an array
of topological singularities of the phase (domain walls) at

|6k| = |l€f — EORI which are in fact discommensurations
[4]. Second, inside the enclosed domains separated by
those lines at A = 277/8k, the phase rotates by a slow
diffusion. As the system is relaxational, this diffusion
takes place over times varying as A%. Here, the duration
time is 7, ~ 1/|8¢|* and it diverges when |8¢| approaches
zero (case of homogeneous states). Once the final state is
reached, the whole forcing constraint is relaxed and the
transient beating mode disappears.

Because the forcing mode is coherent, the splitting of
the basic structure in multidomains is regular. In hetero-
geneous structures, sidebands of the basic mode may be
nonlinearly excited thus creating at random transient
domains with different wave vectors, involving disloca-
tions and domains walls. The walls, being topologically
analogous to the discommensurations, play the same role
[16], and then the transformations under a sudden and
large increase of the control parameter occur rapidly (the
most frequent case). This process is also facilitated by the
large scale modulations often present at random in space
in any spatially extended system [11]. Thus, the multi-
domain formation allows the transformation to occur by
diffusion within times much shorter than in ideal homo-
geneous symmetry breakings. Usually, pattern formation
is rather achieved in this way (defect-mediated trans-
formations) [17]. Other examples are the Eckhaus insta-
bility and the defect-mediated chaos. Hence, these results
may help in interpreting the intricate transient structures
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and the role of the defects in the symmetry breakings
occurring in an extended dynamical system, when the
control parameter is suddenly varied. This double mecha-
nism of structure evolution is very similar to the mar-
tensitic transformation in crystalline solids [18].

We have shown how selective forcing provides an effi-
cient tool to study and even control the main properties of
extended nonlinear systems. It is found that the dynamics
of the entrainment involves a double mechanism of crea-
tion of small domains mediated by singularities, allowing
a rapid change of the wave vector by diffusion of the
phase. These results show the decisive action of the de-
fects and they should apply as well in other highly dimen-
sional systems undergoing structure transformations.
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