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Proton-Number Fluctuation as a Signal of the QCD Critical End Point

Y. Hatta
Department of Physics, Kyoto University, Kyoto 606-8502, Japan

and The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198, Japan

M. A. Stephanov
Department of Physics, University of Illinois, Chicago, Illinois 60607-7059, USA

and RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA
(Received 11 February 2003; published 4 September 2003; publisher error corrected 8 September 2003)
102003-1
We argue that the event-by-event fluctuation of the proton number is a meaningful and promising
observable for the purpose of detecting the QCD critical end point in heavy-ion collision experiments.
The long range fluctuation of the order parameter induces a characteristic correlation between protons
which can be measured. The proton fluctuation also manifests itself as anomalous enhancement of
charge fluctuations near the end point, which might be already seen in existing data.
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ing the proton number fluctuation as a sensible and prom- � � 0:12 	 �. Note that �=� � 2� �, where � � 0:04.
The event-by-event fluctuations in heavy-ion collisions
carry information about the degrees of freedom of the
created system and their correlations [1]. In particular,
thermodynamic properties of QCD can be inferred from
event-by-event fluctuation measurements [2–7].

Of particular interest are fluctuations originating from
the QCD critical end point [3,4,8–12]. Since the fluctua-
tion of the order parameter induces characteristic correla-
tions among particles, in particular, pions, it is expected
that the end point affects the event-by-event fluctuations
of certain observables in a nontrivial way [3,4,13].

Here we discuss a new observable which may serve as a
signal of the end point; the event-by-event fluctuation of
the net proton number, i.e., the number of the protons
minus the number of antiprotons observed [14].

Our starting point is the fact that the baryon number
susceptibility �B [15–20] diverges at the critical end
point [3,9,12,21]. �B is related to the average magnitude
of the fluctuation �B of the baryon number:

�B �
1

VT
h��B�2i; (1)

where V and T are the volume and the temperature. The
divergence of �B is a consequence of the fact that the
critical point is the end point of a line of first order phase
transitions, which are characterized, in particular, by a
jump in the baryon number density B=V [22]..

If, in a heavy-ion collision experiment, we could mea-
sure all the baryons, the enhancement of the event-by-
event fluctuation of the baryon number in a given sub-
volume would be a signature of the end point. However,
about one half of the emitted baryons are undetected
neutrons which certainly contribute to the fluctuation of
the baryon number. To what extent does the proton num-
ber fluctuation alone reflect the divergence of �B?

This Letter is devoted to clarifying where, in the
observed quantities, the divergence occurs and advocat-
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ising observable for the search of the critical point in the
heavy-ion experiments.

In this work, we confine ourselves to equilibrium ther-
modynamic fluctuations.Various important issues such as
the nonequilibrium evolution of the fluctuations will be
(and some already have been) studied separately.

For simplicity and clarity we shall work in QCD with
exact isospin invariance. The relevant corrections due to
isospin breaking are small as we discuss below. Let us
first show that in this case the isospin number suscepti-
bility, �I, is finite at the end point. The proof is based on
the fact that the singular behavior of thermodynamic
quantities near the critical point is due to the divergence
of a certain correlation length. It is the correlation length
in the 	 channel, the channel with quantum numbers of
the chiral condensate h �   i [3,9]. A density-density cor-
relator, such as �I � �1=T�

R
d3xhV0�x�V0�0�i can diverge

only if the density can mix with the 	 field. For the
isospin density this mixing is strictly forbidden by the
SU�2�V (isospin) symmetry. The isospin density, V0�x�,
transforms as a triplet, 3. On the other hand,	 is a singlet.
The mixing is forbidden and there is no singular contri-
bution in �I [23].

Small explicit breaking of the SU�2�V symmetry by the
quark mass difference mu �md or the isospin chemical
potential �I will induce singularity in �I, since mu �md
and �I are SU�2�V triplets [25], and can produce V0	
mixing. In the context of heavy-ion collisions corre-
sponding singular contributions are negligible.

We summarize by writing the singular parts of the
baryon and isospin number susceptibilities:

�B � ��=�; �I � 0 �singular parts only�; (2)

where � is the divergent correlation length of the sigma
field: � � 1=m	. The zero in Eq. (2) neglects small iso-
spin breaking terms as well as finite terms. The universal
values of the exponents are given by � � 1:2, � � 0:63,
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Let us discuss the implications of (2). In particular,
let us consider charge susceptibility. Study of charge
fluctuations in heavy-ion collisions has attracted much
attention recently. It was proposed that these fluctuations
might reflect thermodynamic conditions earlier in the
collision history, due to charge conservation [6,7]. The
charge fluctuation magnitude per entropy is a measure of
the charge per particle or degree of freedom. In the
quark-gluon plasma (QGP) the charge per degree of
freedom is smaller. If the charge fluctuation is equili-
brating too slowly, the observed value will be smaller
than the equilibrium magnitude which can be calculated
using the resonance gas [5]. However, the estimates of
the charge diffusion [27] suggest that for the rapidity
windows achievable in present experiments charge dif-
fusion is very efficient in equilibrating charge fluctua-
tions, thus practically washing out the ‘‘history’’ effects.
Experimentally, the QGP suppression of the charge fluc-
tuation is not seen [28,29], which is consistent with the
diffusion estimates [27]. The effect of the critical fluctu-
ations we are discussing here is crucially different from
the QGP suppression.While the latter is the history effect,
the critical fluctuations are the equilibrium fluctuations
pertaining to the freeze-out point, and the diffusion is
necessary to establish them.

The measure of charge fluctuations, the charge number
susceptibility, �Q, can be expressed in terms of �B and �I
using the relation Q � B=2
 I3 and the fact that isospin
symmetry requires h�B�I3i � 0:
102003-2
�Q �
1

VT
h��Q�2i �

1

4
�B 
 �I: (3)

Equation (2) then implies that the charge susceptibility
diverges at the critical point, due to the divergence of �B.

We now wish to relate the susceptibilities �B, �I, and
�Q to observable particle number fluctuations. For sim-
plicity, we shall limit our discussion by considering only
protons, neutrons, and pions. Accounting for other par-
ticles will not alter our conclusions. In the hadron lan-
guage, the susceptibilities may be written as

�B �
1

VT
h��Np� �pp 
 �Nn� �nn�

2i;

�I �
1

VT

��
1

2
�Np� �pp �

1

2
�Nn� �nn 
 �N�
���

�
2
�
; (4)

and

�Q �
1

VT
h��Np� �pp 
 �N�
����2i; (5)

where we introduced notation Np� �pp � Np � N �pp for the
net proton number fluctuation, with � denoting event-by-
event deviation from the equilibrium value. Similar nota-
tions are used for neutrons and pions.

Now we concentrate on singular parts of the suscepti-
bilities and ask a question: what does (2) imply for the
individual particle number fluctuations? It is easy to
check that the following set of relations between singular
parts of the particle correlators reproduces the correct
singular behavior given in (2):
h�Np� �pp �Np� �ppi � h�Nn� �nn�Nn� �nni � h�Np� �pp �Nn� �nni; h�N�
����N�
���i � 0

h�Np� �pp �N�
���i � h�Nn� �nn�N�
���i � 0 �singular parts only�:
(6)
Some of these equations follow trivially from isospin
invariance, but some, for instance, the last equation on
the first line and that on the second line, require a stronger
condition. Such relations occur naturally if we attribute
the divergences to the exchange of a sigma meson, which
is an isospin singlet. Using Eqs. (6) we obtain

�B �
4

VT
h�Np� �pp �Np� �ppi; �I � 0;

�Q �
1

VT
h�Np� �pp �Np� �ppi �singular parts only�:

(7)

Remarkably, the singular part of the charge fluctua-
tion comes from the protons. In other words, had we
considered only contributions from charged pions in
�Q, the singular parts of �
�
, ����, �
�� cor-
relators (all are singular at the critical point [4]) would
have canceled each other. We see also that the proton
number fluctuation completely reflects the singu-
larity of the baryon number susceptibility, which justi-
fies its use as a sensible probe of the QCD critical end
point.

To provide a simple estimate of how large the net
proton number fluctuation can become near the critical
point, we begin by calculating the correlator

h�np�nki; (8)

where np is the net proton number in the momentum bin
labeled by the value p. In addition to the usual statistical
fluctuation, the correlator (8) receives a contribution from
the effective interaction with the sigma field 	, L	pp �
g	 �PPP, where g is the dimensionless sigma-nucleon cou-
pling and P is the Dirac field of a proton. All fluctua-
tion observables of the protons can be constructed from
(8) [3,13].

Near the critical point, the singular term in (8) is
represented by a diagram of forward proton-proton scat-
tering. A straightforward calculation following [13]
gives,
Vh�np�nki �
g2

m2
	T

4m2

EpEk
�n
p �1� n
p � � n�p �1� n�p � � �n
k �1� n
k � � n�k �1� n�k � �singular parts only�; (9)
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where m � 940 MeV is the proton mass, Ep �
������������������
p2 
m2

p
and n�p � �expf�Ep ��B�=Tg 
 1�1, whilem	 � 1=� is
the sigma meson (screening) mass.

Let us compare the singularity in (9) to the singularity
in (2). The exponent �=� � 2� � in (2) is very close to
2(the anomalous dimension � of the 	 field is small) and
is equal to two in the mean field approximation (� � 0),
which is the same as the power of 1=m	 in (9).

In a realistic heavy-ion collision environment finite-
ness of the space-time volume severely prevents m	 from
vanishing exactly [4,10]. The smallest achievable value is
estimated to be around �3 fm��1.

One possible concern is that the rescattering in the final
hadronic stage washes out critical point fluctuations. In
this respect, one should bear in mind that the rescattering
in question includes the exchange of the 	 quanta, which,
near the critical point, is the source of the fluctuations we
consider. The critical fluctuations are washed out if the
final (kinetic) freeze-out occurs sufficiently far from the
critical point. In order to see the effect, one should dial
control parameters (e.g., reduce the size of the ions to
raise the freeze-out temperature) to bring the freeze-out
closer to the critical point.

In (9), g is taken at zero momentum transfer, i.e., off
the sigma mass shell. In vacuum, g ’ m=f� (f� �
93 MeV is the pion decay constant) is quite large �10.
For the quantitative estimate below, we assume that g
does not change appreciably from its vacuum value near
the chiral phase transition. (See, however, [30].)

First, let us assume that Au-Au collisions at RHIC at���
s

p
� 130 GeV froze out in the vicinity of the end point

and estimate the effect of (9) in terms of the unknown
mass m	, which is the measure of the proximity of the
end point. At the chemical freeze-out, T � 174 MeV and
�B � 46 MeV [31]. Integrating over p and k, we obtain
the net proton number fluctuation h��Np� �pp�

2i and divide it
by the sum of proton and antiproton numbers hNp
 �ppi:

h��Np� �pp�
2i

hNp
 �ppi

�������RHIC
� 1:0
 0:062

�
g
10

�
2
�
200 MeV

m	

�
2
:

(10)

The unity on the righ-hand side (rhs) is the trivial statis-
tical contribution. Taking g � 10 and m	 � 60 MeV �
�3 fm��1 [4,10], we find h��Np� �pp�

2i=hNp
 �ppi � 1:7.
On the other hand, if the end point were located at a

value of �B of order of a few hundred MeV, as in-
ferred from simple model estimates [9] and suggested
by the recent lattice simulation [11], it is possible that
the SPS freeze-out is in the proximity of the critical
point. Using the freeze-out parameters �T;�B� �
�168 MeV; 266 MeV� at SPS [32] we obtain

h��Np� �pp�
2i

hNp
 �ppi

�������SPS
� 1:0
 1:5

�
g
10

�
2
�
200MeV

m	

�
2
: (11)

Note that the coefficient of the second term has a much
bigger value than in (10). This is because the singular
102003-3
term given by (9) grows as the square of the net proton
number and also because there is a partial cancellation
between protons and antiprotons at RHIC. We stress that
the main feature in (10) and (11) is the singular depen-
dence on m	, which makes the effect large when the
freeze-out occurs near the critical point. There are other
effects, which contribute to the rhs of (10) and (11),
but which are not singular near the critical point (e.g.,
initial volume fluctuations caused by impact parameter
fluctuations).

Experimentally, separating protons and measuring
proton fluctuations is a feasible task in the RHIC as
well as the SPS detectors. We hope that such data analysis
will be available soon.

In order to test our ideas on the existing data we can,
using (10) and (11), estimate the contribution of the
proton fluctuation to the total charge fluctuation charac-
terized by D � 4h��Q�2i=hNtoti [7]. As (7) shows, pions
do not contribute to the singular part of the charge
fluctuation, but they dilute such a contribution of the
protons. Using hN�

��i � 10hNp
 �ppi and h��N�
����2i=
hN�

��i � 1� 0:3 � 0:7, where the negative contribu-
tion �0:3 is due to the resonance decays [5], we obtain

D
4

�
h��Q�2i
hNtoti

�
h��Np� �pp�

2i 
 h��N�
����2i

hNp
 �ppi 
 hN�

��i
� 0:8;

(12)

where we have neglected the cross terms between �Np
and �N�� . We see that the fluctuation anomaly in the
proton sector can result in a larger charge fluctuation
than the resonance gas value � 0:7 by about 10%. At
SPS this effect is even stronger. At SPS, using (11), g �
10 and m	 � 200 MeV we get h��Np� �pp�

2i=hNp
 �ppi � 2:5,
and with hN�

��i � 5hNp
 �ppi we obtain D=4 � 1.

Before these estimates can be compared to experiment,
one must take into account the effect of limited accep-
tance of a given detector. It is easy to see that this effect
reduces deviations from D � 4. Its estimates range from
few percent corrections [7] to almost complete elimina-
tion of deviations from D � 4 [33], depending on the as-
sumptions on the rapidity correlator of fluctuations and
the width of the acceptance window. We do not discuss
these issues here, and refer the reader to the literature.

Experimentally, the data from RHIC suggest that the
magnitude of the fluctuation is slightly larger than a
thermodynamical fluctuation in a resonance gas [28].
This effect is even more pronounced at SPS [29]. There
are, of course, a number of possible explanations, for
example, (i) acceptance, as we have just discussed [33];
(ii) remnant initial state correlations; (iii) decay of multi-
ply charge clusters; (iv) other nonequilibrium fluctuations
(e.g., by a mechanism similar to [21]); In this Letter we
wish to point out that, quite independently of these other
effects, an equilibrium critical fluctuation due to the
proximity of the end point could explain the enhancement
of charge fluctuations observed at RHIC and SPS. The
102003-3
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independent measurement of proton fluctuations that we
suggested would be necessary to confirm and sufficient to
rule out this effect.

Is it possible that the light sigma effect is seen in both
RHIC and SPS experiments? If this happens, the region of
�B where m	 is small (< 200 MeV) is rather wide — of
the order of 100 MeV. Although unlikely, this might not be
completely unnatural if one takes into account the fact
that m	 is suppressed on the crossover line stretching
from the end point to �B � 0 axis, even though it van-
ishes only at the end point (see, e.g., Fig. 5 in [12]).

As it should be clear from our discussion, measuring
the charge fluctuations is not the most efficient way to
search for the end point, although the effect may be seen
in such observables too. A direct measurement of the
proton number fluctuation as a function of the

���
s

p
of the

collision is both feasible and is less afflicted by other
effects. Correlation of such a measurement with other
proposed signatures of the critical point (such as pt
fluctuations [3]) would affirm the discovery of the QCD
critical point.

In conclusion, protons carry both the baryon and the
electric charges. They are sensitive to the fluctuation of
the order parameter. Because of the peculiar nature of the
end-point — isospin blindness of the sigma field — the
singularity of the baryon number susceptibility is com-
pletely reflected in the proton number fluctuation. Thus
the net proton number fluctuation is a very useful observ-
able. By studying the �B dependence of this fluctuation
one may discover and determine the location of the criti-
cal point on the phase diagram of QCD.

We are grateful to L. McLerran and R. Pisarski for
many discussions as well as to M. Asakawa, M. Kaneta,
and T. Kunihiro for comments. Y. H. thanks RIKEN BNL
Center for hospitality during the completion of this work.
M. S. thanks RIKEN BNL Center and U.S. Department of
Energy (DE-AC02-98CH10886) for providing facilities
essential for the completion of this work. The work of
M. S. is supported in part by DOE (FG0201ER41195) and
by the Alfred P. Sloan Foundation.
10200
[1] M. Gazdzicki and S. Mrowczynski, Z. Phys. C 54, 127
(1992); M. Gazdzicki, A. Leonidov, and G. Roland,
Eur. Phys. J. C 6, 365 (1999).

[2] L. Stodolsky, Phys. Rev. Lett. 75, 1044 (1995); E.V.
Shuryak, Phys. Lett. B 423, 9 (1998).

[3] M. A. Stephanov, K. Rajagopal, and E.V. Shuryak, Phys.
Rev. Lett. 81, 4816 (1998).

[4] M. A. Stephanov, K. Rajagopal, and E.V. Shuryak, Phys.
Rev. D 60, 114028 (1999).

[5] S. Jeon and V. Koch, Phys. Rev. Lett. 83, 5435 (1999).
3-4
[6] M. Asakawa, U. Heinz, and B. Müller, Phys. Rev. Lett.
85, 2072 (2000).

[7] S. Jeon and V. Koch, Phys. Rev. Lett. 85, 2076 (2000).
[8] M. Asakawa and K. Yazaki, Nucl. Phys. A504, 668

(1989); A. Barducci, R. Casalbuoni, S. De Curtis,
R. Gatto, and G. Pettini, Phys. Lett. B 231, 463 (1989).

[9] J. Berges and K. Rajagopal, Nucl. Phys. B538, 215
(1999); M. A. Halasz, A. D. Jackson, R. E. Shrock,
M. A. Stephanov, and J. J. Verbaarschot, Phys. Rev. D
58, 096007 (1998).

[10] B. Berdnikov and K. Rajagopal, Phys. Rev. D 61, 105017
(2000).

[11] Z. Fodor and S. D. Katz, J. High Energy Phys. 0203, 014
(2002).

[12] Y. Hatta and T. Ikeda, Phys. Rev. D 67, 014028 (2003).
[13] M. A. Stephanov, Phys. Rev. D 65, 096008 (2002).
[14] Similar conclusions apply to the fluctuations of the

number of protons or antiprotons separately. The net
proton number appears more naturally in the theoretical
analysis, and we focus on it for clarity.

[15] L. D. McLerran, Phys. Rev. D 36, 3291 (1987).
[16] T. Kunihiro, Phys. Lett. B 271, 395 (1991).
[17] A. Gocksch, Phys. Rev. Lett. 67, 1701 (1991).
[18] S. Gottlieb, W. Liu, D. Toussaint, R. L. Renken, and R. L.

Sugar, Phys. Rev. Lett. 59, 2247 (1987).
[19] MILC Collaboration, C. Bernard et al., hep-lat/0209079.
[20] R.V. Gavai, J. Potvin, and S. Sanielevici, Phys. Rev. D 40,

2743 (1989).
[21] S. Gavin, nucl-th/9908070; D. Bower and S. Gavin, Phys.

Rev. C 64, 051902 (2001).
[22] Note that the rise of �B near Tc at �B � 0 [18,19] is not

due to the critical fluctuations, but to the liberation of
QCD degrees of freedom [16,17,20]. In fact, �B is finite
at �B � 0 and Tc.

[23] For a similar reason the axial isospin susceptibility
remains finite at T � Tc, �B � 0 [24].

[24] D.T. Son and M. A. Stephanov, Phys. Rev. Lett. 88,
202302 (2002).

[25] In the sense that they couple to SU�2�V triplet fields. The
argument here is similar to [26].

[26] J. B. Kogut, M. A. Stephanov, and D. Toublan, Phys. Lett.
B 464, 183 (1999).

[27] E.V. Shuryak and M. A. Stephanov, Phys. Rev. C 63,
064903 (2001).

[28] STAR Collaboration, J. G. Reid et al., Nucl. Phys. A698,
611 (2002); STAR Collaboration, S. A. Voloshin et al.,
nucl-ex/0109006; STAR Collaboration, R. L. Ray et al.,
Nucl. Phys. A715, 45–54 (2003).

[29] NA49 Collaboration, S.V. Afanasev et al., Nucl. Phys.
A698, 104 (2002).

[30] T. Hatsuda and T. Kunihiro, Phys. Lett. B 185, 304
(1987).

[31] P. Braun-Munzinger, K. Magestro, K. Redlich, and
J. Stachel, Phys. Lett. B 518, 41 (2001).

[32] P. Braun-Munzinger, J. Stachel, J. P. Wessels, and N. Xu,
Phys. Lett. B 365, 1 (1996).

[33] J. Zaranek, Phys. Rev. C 66, 024905 (2002).
102003-4


