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An Infrared Renormalization Group Limit Cycle in QCD
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We use effective field theories to show that small increases in the up and down quark masses would
move QCD very close to the critical renormalization group trajectory for an infrared limit cycle in the
three-nucleon system. We conjecture that QCD can be tuned to the critical trajectory by adjusting
the quark masses independently. At the critical values of the quark masses, the binding energies of the
deuteron and its spin-singlet partner would be tuned to zero and the triton would have infinitely many
excited states with an accumulation point at the 3-nucleon threshold. The ratio of the binding energies of
successive states would approach a universal constant that is close to 515.
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system that integrate out short-distance degrees of free- discrete scale invariance: symmetry with respect to
The development of the renormalization group (RG)
has had a profound effect on many branches of physics. Its
successes range from explaining the universality of criti-
cal phenomena in condensed matter physics to the non-
perturbative formulation of quantum field theories that
describe elementary particles [1]. The RG can be reduced
to a set of differential equations that define a flow in the
space of coupling constants. Scale-invariant behavior at
long distances, as in critical phenomena, can be explained
by RG flow to an infrared fixed point. Scale-invariant
behavior at short distances, as in asymptotically free field
theories, can be explained by RG flow to an ultraviolet
fixed point. However, a fixed point is only the simplest
topological feature that can be exhibited by a RG flow.
Another possibility is a limit cycle, which is a one-
dimensional orbit that is closed under the RG flow. The
possibility of RG flow to a limit cycle was proposed by
Wilson in 1971 [2]. Glazek and Wilson have recently
constructed a simple discrete Hamiltonian system that
exhibits a limit cycle [3]. However, few physical applica-
tions of RG limit cycles have emerged.

The purpose of this Letter is to point out that quantum
chromodynamics (QCD) is close to the critical trajectory
for an infrared RG limit cycle in the 3-nucleon sector. We
conjecture that it can be tuned to the critical trajectory by
small changes in the up and down quark masses. The
proximity of the physical quark masses to these critical
values explains the success of a program initiated by
Efimov to describe the 3-nucleon problem in terms of
zero-range forces between nucleons [4]. An effective-
field-theory formulation of this program by Bedaque,
Hammer, and van Kolck exhibits an ultraviolet RG limit
cycle [5]. The proximity of physical QCD to the critical
trajectory implies that the ultraviolet limit cycle of
Ref. [5] is not just an artifact of their model.

In the late 1960s, Wilson used the RG to explain uni-
versality in critical phenomena [1]. Transformations of a
0031-9007=03=91(10)=102002(4)$20.00 
dom while leaving the long-distance physics invariant
define a RG flow on the multidimensional space of cou-
pling constants g for operators in the Hamiltonian:

�
d
d�

g � ��g�; (1)

where � is an ultraviolet momentum cutoff. Standard
critical phenomena are associated with infrared fixed
points g� of the RG flow, which satisfy ��g�� � 0. The
tuning of macroscopic variables to reach a critical point
corresponds to the tuning of the coupling constants g to a
critical trajectory that flows to the fixed point g� in the
infrared limit � ! 0. One of the signatures of an RG
fixed point is scale invariance: symmetry with respect to
the coordinate transformation r ! �r for any positive
number �. This symmetry implies that dimensionless
variables scale as powers of the momentum scale, perhaps
with anomalous dimensions.

In 1971, Wilson suggested that the RG might also be
relevant to the strong interactions of elementary particle
physics [2]. At that time, the fundamental theory for the
strong interactions had not yet been discovered. It was
believed to involve quarks, and hints that the strong
interactions might have scaling behavior at high ener-
gies had been observed in experiments on deeply in-
elastic lepton-nucleon scattering. Wilson suggested that
simple high-energy behavior can be explained by simple
RG flow of the relevant coupling constants in the ultra-
violet limit � ! 1. The simplest possibility is RG
flow to an ultraviolet fixed point. Another simple possi-
bility is RG flow to an ultraviolet limit cycle. A limit
cycle is a one-parameter family of coupling constants
g���� that is closed under the RG flow and can be pa-
rametrized by an angle 0< �< 2�. The RG flow carries
the system around a complete orbit of the limit cycle
every time the ultraviolet cutoff � increases by some
factor �0. One of the signatures of an RG limit cycle is
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the coordinate transformation r ! �n0r only for integer
values of n. This symmetry implies that certain dimen-
sionless observables, such as the ratio of the cross sec-
tions for e�e� annihilation into hadrons and muons, are
periodic functions of the logarithm of the momentum
scale with period ln��0�. The fundamental field theory
for the strong interactions, QCD, was eventually discov-
ered. QCD has a single coupling constant 
s��� with an
asymptotically free ultraviolet fixed point: 
s��� ! 0 as
� ! 1 [6].

In 1970, Efimov discovered a remarkable effect in the
three-body sector for nonrelativistic particles with a reso-
nant short-range S-wave two-body interaction [7]. The
strength of the interaction is governed by the S-wave scat-
tering length a. Efimov showed that if jaj is much larger
than the range r0 of the interaction, there are shallow
three-body bound states whose number increases loga-
rithmically with jaj=r0. In the resonant limit a! 
1,
there are infinitely many shallow three-body bound states
with an accumulation point at the three-body scattering
threshold. If the particles are identical bosons, the ratio of
the binding energies of successive states rapidly ap-
proaches the universal constant �20 � 515, where �0 �
e�=s0 � 22:7 and s0 � 1:006 24 is a transcendental num-
ber. Efimov also showed that low-energy three-body ob-
servables for different values of a are related by a discrete
scaling transformation in which a! �n0a, where n is an
integer, and lengths and energies are scaled by the appro-
priate powers of �n0 [7,8]. The connection between the
Efimov effect and RG limit cycles was first pointed out in
Ref. [9].

The Efimov effect can also occur for fermions with at
least three distinct spin or isospin states. Nucleons are
examples of fermions with large scattering lengths. The
spin-singlet and spin-triplet np scattering lengths are
as � �23:8 fm and at � 5:4 fm. They are both signifi-
cantly larger than the effective range, which is r0 �
1:8 fm in the spin-triplet channel. Efimov used this
observation as the basis for a qualitative approach to the
3-nucleon problem [4]. He took nucleons as point par-
ticles with zero-range potentials whose strengths are
adjusted to reproduce the scattering lengths as and at.
The effective range and higher order terms in the low-
energy expansions of the phase shifts were treated as
perturbations. This approach works well in the 2-nucleon
system, giving accurate predictions for the deuteron
binding energy. This is no surprise; it simply reflects the
well-known success of the effective-range expansion in
the 2-nucleon system [10]. Remarkably, Efimov’s pro-
gram also works well in the 3-nucleon system at momenta
small compared to m�. In the triton channel, the Efimov
effect makes it necessary to impose a boundary condition
on the wave function at short distances. The boundary
condition can be fixed by using the triton binding energy
as input. The neutron-deuteron scattering length can then
be predicted with surprising accuracy.
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The Efimov effect was revisited by Bedaque, Hammer,
and van Kolck (BHvK) within the framework of effective
field theory (EFT) [11]. The problem of bosons with mass
m and large scattering length a can be described by a
nonrelativistic field theory with a complex-valued field  
and Hamiltonian density

H � � �h2=2m�r �  r � g2���� � �2: (2)

For convenience, we set �h � 1 in the following. In the
two-body sector, the exact solution of the field theory can
be obtained analytically. Renormalization can be imple-
mented by adjusting the two-body coupling constant
g2��� as a function of the ultraviolet momentum cutoff
� so that the scattering length is a. Other two-body
observables are then independent of � and have the
appropriate values for bosons with zero effective-range.

In the three-body sector, the nonperturbative solution
of the field theory can be obtained by solving integral
equations numerically. These integral equations have
unique solutions only in the presence of an ultraviolet
cutoff �. The resulting predictions for three-body ob-
servables, although finite, depend on the cutoff and are
periodic functions of ln��� with period �=s0. BHvK
showed that the quantum field theory could be fully
renormalized to remove the residual dependence on �
in the three-body sector by adding a three-body interac-
tion term g3���� � �3 to the Hamiltonian density in (2)
[11]. The dependence of three-body observables on the
cutoff decreases like 1=�2 if the three-body coupling
constant has the form g3��� � �4mg2���2H���=�2,
where

H��� �
cos�s0 ln��=��� � arctan�s0��
cos�s0 ln��=��� � arctan�s0��

(3)

for some value of ��. With this renormalization, three-
body observables have well-defined limits as � ! 1, but
they depend on the parameter �� introduced by dimen-
sional transmutation. Since H��� is a periodic function of
ln���, the renormalization of the field theory involves an
ultraviolet limit cycle.

An EFT of nucleons with contact interactions only
has also been applied to the 3-nucleon problem [5,12].
This contact EFT involves an isospin doublet N of Pauli
fields with two independent two-body contact interac-
tions: Ny�iNcNcy�iN and Ny�kNcNcy�kN, where Nc �
�2�2N�. The natural scale for the ultraviolet cutoff is
��m�, since the pion is the lightest degree of free-
dom not explicitly included in the EFT. Renormaliza-
tion in the two-body sector requires that the two
coupling constants be adjusted as a function of � to
obtain the correct spin-singlet and spin-triplet scattering
lengths as and at. Renormalization in the three-body
sector requires the three-body contact interaction
Ny�iNcNcy�jNNy�i�jN with a coefficient proportional
to (3). Thus the renormalization involves an ultraviolet
102002-2
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limit cycle. We argue below that this ultraviolet limit
cycle is a hint of an infrared limit cycle in QCD.

The low-energy few-nucleon problem can also be de-
scribed by an EFT that includes explicit pion fields as
well as contact interactions between the nucleons. This
EFT is applicable in a domain that hopefully extends to
momenta somewhat greater than m�. The renormaliza-
tion of the EFT with pions does not involve any RG limit
cycle. But this has no implications for the possible exis-
tence of an infrared RG limit cycle in QCD.

Our argument is based on recent work in which an EFT
with explicit pions was used to extrapolate nuclear forces
to the chiral limit of QCD [13–15]. In this limit, the
massesmu andmd of the up and down quarks are zero and
the pion is an exactly massless Goldstone boson associ-
ated with spontaneous breaking of the chiral symmetry
of QCD. According to these chiral extrapolations the
small binding energy 2.2 MeVof the deuteron is a fortu-
itous consequence of the physical values of mu and md.
When extrapolated to the chiral limit, the deuteron has a
much larger binding energy comparable to the scale
1=�mNr20� � 10 MeV set by the NN effective range.
Conversely, if extrapolated farther from the chiral limit,
the deuteron’s binding energy decreases to 0 and then it
becomes unbound. This effect is illustrated in Fig. 1,
which shows the chiral extrapolation of the inverse scat-
tering lengths 1=at and 1=as as functions of m� from
Ref. [15]. In the EFT with pions, the coefficients of some
of the 2-nucleon contact interactions are not constrained
by data. The bands in Fig. 1 are obtained by varying those
coefficients over natural ranges. The width of the error
band, of course, shrinks to zero at the physical value of
m�. The prediction of Ref. [15] is that the critical value
m�;t at which 1=at � 0 is in the range 170 MeV<m�;t <
210 MeV, which is not much larger than the physical
value of m�. The extrapolation of 1=as has larger uncer-
tainties. It may increase to zero at some critical valuem�;s
greater than 150 MeV, in which case the spin-singlet
deuteron is bound for m� > m�;s, or it may remain nega-
FIG. 1 (color online). The inverse scattering lengths 1=at and
1=as as functions of m� as predicted by the EFT with pions of
Ref. [15].
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tive, in which case the spin-singlet deuteron remains
unbound. Beane and Savage [14] have argued that the
extrapolation errors in the chiral limit are larger than
estimated in Ref. [15], but their errors agree for the small
extrapolation to the region of larger m� where the deu-
teron becomes unbound.

We now consider the chiral extrapolation of the three-
body spectrum. This could be calculated using an EFT
with explicit pions. Alternatively, the chiral extrapo-
lation can be calculated using the contact EFT of
Ref. [5]. The inputs required are as, at, and �� as func-
tions of m�, which can be calculated using an EFT with
pions. For the inverse scattering lengths 1=as and 1=at,
we take the central values of the error bands obtained
from the chiral extrapolation in Ref. [15]. The depen-
dence of �� on m� could be determined from the chiral
extrapolation of the triton binding energy using an EFT
with pions, but this has not yet been calculated. Like the
inverse scattering lengths, �� should vary smoothly with
m�. For small extrapolations of m� from its physical
value, we can approximate �� by a constant. We use the
value �� � 189 MeV for m� � 138 MeV obtained by
taking the triton binding energy as the three-body input.
In Fig. 2, we show the three-body spectrum in the triton
channel as a function of m�. The crosses give the bind-
ing momenta  � �mB3�

1=2 of the physical deuteron and
triton, while the dashed lines give the thresholds for
decay into a nucleon plus a deuteron (left curve) or a
spin-singlet deuteron (right curve) in the large-a approxi-
mation. The circles indicate the triton ground state and
excited state. In the region near m� � 175 MeV where
the decay threshold comes closest to the 3-nucleon
threshold  � 0, an excited state of the triton appears.
The existence of this very shallow state is a hint that the
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FIG. 2 (color online). The binding momenta  � �mB3�
1=2 of

pnn bound states as a function of m� calculated using the
contact EFT of Ref. [5]. The circles indicate the triton ground
state and excited state. The crosses give the binding energy of
the physical deuteron and triton, while the dashed lines give the
thresholds for decay into a nucleon plus a deuteron (left curve)
or a spin-singlet deuteron (right curve).
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system is very close to the critical RG trajectory for an
infrared limit cycle.

If, as in the case illustrated by Fig. 2, the values m�;t
and m�;s at which 1=at and 1=as go to zero satisfy m�;s <
m�;t, then the deuteron and spin-singlet deuteron are both
bound in the region m�;s < m� < m�;t. Since the decay
threshold never extends all the way down to the 3-nucleon
threshold  � 0, there cannot be an infrared limit cycle.
The error bands in Ref. [15] do not exclude m�;t < m�;s,
in which case the deuteron and spin-singlet deuteron are
both unbound in the region m�;t < m� < m�;s. The decay
threshold then extends all the way down to  � 0, but
there is still no infrared limit cycle, because any finite
scattering length will act as an infrared cutoff in the
three-body sector.

We conjecture that QCD can be tuned to the critical RG
trajectory for an infrared limit cycle by adjusting the up
and down quark massesmu andmd. In the next-to-leading
order chiral extrapolation of Ref. [15], only quark-mass
dependent operators proportional to mu �md enter. The
extrapolation inm� can be interpreted as an extrapolation
in the sum mu �md, with mu �md held fixed. Changing
mu �md changes the degree of isospin-symmetry break-
ing. Since as and at correspond to different isospin chan-
nels, they respond differently to changes in mu �md.
Therefore it may be possible by tuning both mu and md
to make 1=at and 1=as vanish simultaneously: m�;t �
m�;s. This point corresponds to a critical RG trajectory
for an infrared limit cycle. At this critical point, the
triton has infinitely many increasingly shallow excited
states with an accumulation point at the 3-nucleon thresh-
old. The ratio of the binding energies of successively
shallower states rapidly approaches a constant �2

0 close
to 515. Now consider a RG transformation that integrates
out energies above some scale �2=mN . As � is decreased,
the deepest 3-nucleon bound states are removed from the
spectrum, leaving only those for which the deviations
from the asymptotic ratio �20 are negligible. Thus a limit
cycle with a discrete-scaling-symmetry factor �0 is ap-
proached in the infrared limit � ! 0. Note that one can
infer the existence of the infrared limit cycle from the
discrete scaling symmetry without constructing the RG
flow explicitly.

The proximity of physical QCD to the critical trajec-
tory for the infrared limit cycle explains the success of
Efimov’s program [4] for describing the 3-nucleon prob-
lem using zero-range forces or a contact EFT [5]. The
apparent convergence of the effective-range corrections
for momenta of order m� [12] could be explained if the
momentum expansion in the contact EFT is in powers of
p=m�

�, where m�
� � 175 MeV is the critical value of the

pion mass.
The proximity of physical QCD to the critical trajec-

tory for the infrared limit cycle has implications for
efforts to derive nuclear physics from lattice gauge
102002-4
theory. The computational effort for lattice simulations
increases dramatically as the pion mass decreases and is
prohibitive at the physical value. Lattice simulations are
typically carried out at a value of m� that is 2–3 times
larger than the physical value, and then a chiral extrapo-
lation is made to m� � 138 MeV. This requires extrapo-
lating past the region of m� where there is an RG limit
cycle, which may introduce large extrapolation errors in
three-body observables.

Lattice gauge calculations can help test our conjecture
that QCD can be tuned to the critical trajectory for the
infrared limit cycle by adjusting the quark masses.
Because the scattering lengths as and at are so large,
direct calculations of few-nucleon observables are cur-
rently not possible at the physical values of the quark
masses, and even more difficult closer to their critical
values. Such calculation may, however, be feasible at
larger values of the quark masses where as and at have
natural values of order 1=m�. If this region overlaps with
the domain of validity of the EFT with pions, lattice
calculations can be used to constrain the quark-mass
dependence of the low-energy constants in the EFT.
One might then be able to use a combination of lattice
QCD and EFT to demonstrate the existence of the infra-
red RG limit cycle of QCD.
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