
P H Y S I C A L R E V I E W L E T T E R S week ending
5 SEPTEMBER 2003VOLUME 91, NUMBER 10
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An integro-differential equation governing the evolution of the leading-order B-meson light-cone
distribution amplitude is derived. The anomalous dimension in this equation contains a logarithm of the
renormalization scale, whose coefficient is identified with the cusp anomalous dimension of Wilson
loops. The exact solution of the evolution equation is obtained, from which the asymptotic behavior of
the distribution amplitude is derived. These results can be used to resum Sudakov logarithms entering
the hard-scattering kernels in QCD factorization theorems for exclusive B decays.
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controlling the scale dependence of the LCDA and the
kernel under the convolution integral (1) using evolution

where Z��!; ! ; �� 	 ��! � ! � at lowest order.
Operators with different momentum !0 can mix under
1. Introduction.—It has recently become apparent that
the light-cone structure of the B meson is of great phe-
nomenological interest. At leading power in �QCD=mb the
amplitudes for many exclusive B-meson decays can be
simplified significantly using QCD factorization theo-
rems, expressing them in terms of convolution integrals
of perturbative hard-scattering kernels with leading-
order light-cone distribution amplitudes (LCDAs) [1].
Using standard perturbative QCD methods for hard ex-
clusive processes, B-meson LCDAs were first introduced
in a study of the asymptotic behavior of heavy-meson
form factors at large momentum transfer [2]. Two such
amplitudes, called�B

��!;��, arise in the parametrization
of B-meson matrix elements of bilocal heavy-light cur-
rent operators at leading order in heavy-quark effective
theory (HQET). In B-decay processes where light ener-
getic particles are emitted into the final state, such as
B! 		 and B! K��, a sensitivity to the B-meson
LCDAs arises from hard interactions of collinear partons
with the soft spectator quark inside the B meson. In
almost all applications of QCD factorization theorems
only the function �B

��!;�� contributes. Generically, the
hard-spectator term in a QCD factorization formula is of
the form

Z 1

0

d!
!

T�!;���B
��!;�� ; (1)

where the kernel T is calculable in perturbation theory.
The factor 1=! ensures convergence of the integral for
large !. The characteristic scale for soft-collinear inter-
actions is 2E!�mb�QCD, where E�mb is the energy of
a collinear particle in the B-meson rest frame. At fixed
order in perturbation theory the kernel depends logarith-
mically on this scale, and it is independent of ! to lowest
order in perturbation theory. In addition, the kernel can
depend on hard scales of order mb. We will assume below
that T is defined such that the convolution integral (1) is
renormalization-group (RG) invariant.

A thorough understanding of factorization requires
0031-9007=03=91(10)=102001(4)$20.00 
equations. This is crucial for a clean separation of physics
associated with different mass scales and for the system-
atic resummation of large (Sudakov) logarithms, which
enter the kernel at every order in perturbation theory. In
this Letter, we derive the RG equations for the LCDA
�B

��!;�� and for the kernel T�!;��, present their exact
analytic solutions, and extract model-independent results
for the asymptotic behavior for !! 0 and !! 1.

2. Evolution equations.—The LCDA is given by the
Fourier transform

�B
��!;�� 	

1

2	

Z
d� ei!� ~��B

���;�� (2)

of a function ~��B
���;�� defined in terms of a B-meson

matrix element in HQET. Denoting by h the effective
heavy-quark field and by qs the soft spectator quark,
and using a mass-independent normalization of meson
states, we write [2]

h 0 j 	qqs�z� Sn�z; 0�6n
 h�0� j 	BB�v�i 	 �
iF���

2
~��B
���;��

� tr

�
6n


1 � 6v
2

�5

�
:

(3)
Here z k n with n2 	 0 is a null vector, v is the B-meson
velocity, 
 represents an arbitrary Dirac matrix, and � 	
v � z� i0. The gauge string Sn�z; 0� represents a soft
Wilson line connecting the points 0 and z on a straight
lightlike segment. The quantity F��� is the HQET matrix
element corresponding to the asymptotic value of the
product fB

�������
mB

p
in the heavy-quark limit. The analytic

properties of the function ~��B
���;�� in the complex �

plane imply that �B
��!;�� 	 0 if !< 0.

We denote by O��!� the Fourier transform of the
bilocal HQET operator in (3) and write the relation be-
tween bare and renormalized operators in the form

Oren
� �!;�� 	

Z
d!0 Z��!;!

0; ��Obare
� �!0� ; (4)
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FIG. 1. One-loop diagrams contributing to the calculation of
the anomalous dimension. The crossed circle denotes an in-
sertion of the operator Obare

� �!0�. The double lines represent
heavy-quark fields in HQET.
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renormalization since they have the same quantum num-
bers. In the modified minimal subtraction (MS) scheme
the function Z��!;!0; �� is defined so as to subtract the
ultraviolet (UV) poles in the matrix elements of the bare
operators.

The B-meson matrix element of the renormalized op-
erator Oren

� �!;�� is, up to a Dirac trace, given by the
product F����B

��!;��. It follows that the LCDA obeys
the evolution equation

d
d ln�

�B
��!;�� 	 �

Z 1

0
d!0 ���!;!0; ���B

��!
0; ��

(5)

with the anomalous dimension [unless otherwise indi-
cated,  s �  s���]

���!;!0; �� 	 �
Z
d ~!!

dZ��!; ~!!;��
d ln�

Z�1
� � ~!!;!0; ��

� �F� s���!�!0� : (6)

Here �F is the universal anomalous dimension of local
heavy-light currents in HQET, which determines the
scale dependence of F���.

At one-loop order the result for Z��!;!
0; �� is ob-

tained by evaluating the 1=! poles of the one-loop HQET
diagrams shown in Fig. 1, where d 	 4 � 2! in dimen-
sional regularization. The loop integrals contain � func-
tions whose arguments depend on the value of the ‘‘plus
component’’ k� 	 n � k of the loop momentum. In units
of CF s=4	, the corresponding contributions to
Z��!;!

0; �� are given by (k � �k�)

D1 	 �
2

!

Z 1

0

dk
k

�
k
�

�
�2!

���k�!0 �!� � ��!�!0�� ;

D2 	 �
2

!

Z !0

0

dk
k
!0 � k
!0

���k�!�!0� � ��!�!0�� :

(7)

These expressions must be understood in the sense of
distributions, and only pole terms in 1=! are kept after
integration over !0 in (4). Note that the k integral in the
first diagram in Fig. 1 gives rise to a 1=!2 pole times
��!�!0�. Accounting for wave-function renormaliza-
tion of the external quark fields we obtain

Z�1�
� �!;!0;�� 	

�
1

!2 �
2

!
ln
�
!
�

5

2!

�
��!�!0�

�
2

!

�
!
!0

%�!0 �!�
!0 �!

�
%�!�!0�

!�!0

�
�

: (8)

Here and below a superscript ‘‘(1)’’ is used to indicate
one-loop coefficients in units of CF s=4	. The plus dis-
tribution is defined such that, when Z� is integrated with
a function f�!0�, one must replace f�!0� ! f�!0� � f�!�
under the integral. The nondiagonal terms in (8) agree
with those found in [2]; however, the double pole and
logarithm in the first term were missed in that paper. For
102001-2
the anomalous dimension in (6) we now obtain

���!;!
0; �� 	

�

cusp� s� ln

�
!
� �� s�

�
��!�!0�

�!
�!;!0;  s�; (9)

where
R
d!0 
�!;!0;  s� 	 0 by definition. Taking into

account that ��1�
F 	 �3 is the one-loop coefficient of the

anomalous dimension of heavy-light currents, it follows
from (8) that 
�1�

cusp 	 4, ��1� 	 �2, and


�1��!;!0� 	�
�1�
cusp

�
%�!0 �!�
!0�!0 �!�

�
%�!�!0�

!�!�!0�

�
�

: (10)

The anomalous dimension in (9) is of the Sudakov
type. It contains a logarithmic dependence on the renor-
malization scale in addition to the dependence through
the running coupling  s���. This feature distinguishes
the kernel for the B-meson LCDA from the familiar
Brodsky–Lepage kernel for the LCDA of a light pseudo-
scalar meson [3]. The extra logarithm has its origin in the
renormalization properties of Wilson lines with lightlike
segments [4]. Using the fact that a heavy quark in HQET
can be described by a Wilson line h�0� 	 Sv�0;�1�h0,
where h0 is a sterile field without QCD interactions, it
follows that the interacting fields in the operator in (3) can
be written as 	qqs�z� Sn�z; 0� Sv�0;�1�. This corresponds to
a gauge string extending from minus infinity to 0 along
the v direction, another string extending from 0 to z
along the lightlike n direction, and a light-quark field
located at the end of the string at position z. This Wilson
line has a cusp singularity at the origin, which gives rise
to a local, single-logarithmic term in the anomalous
dimension. From (7) it is seen that the logarithm arises
indeed from the gluon exchange between the two strings
Sn and Sv (first diagram in Fig. 1). Such cusp singularities
are universal and of a geometric origin. The correspond-
ing anomalous dimension 
cusp is process independent
and has been computed at two-loop order in [4]. The
important observation following from this discussion is
that also in higher orders there is only a single logarithm
present in the anomalous dimension ���!;!0; ��. With
this knowledge, the evolution equation can be solved in
RG-improved perturbation theory.

From the scale independence of the convolution inte-
gral (1) it follows that the hard-scattering kernel obeys
102001-2
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the evolution equation

d
d ln�

T�!;�� 	
Z 1

0
d!0 !

!0
���!

0; !;��T�!0; �� :

(11)

The explicit result for the anomalous dimension given
above shows that !

!0 ���!0; !;�� 	 ���!;!0; �� (at
least to one-loop order). Hence, apart from an overall
sign the LCDA and the kernel obey the same RG equation.

3. Analytic solutions.—The general solution of the
evolution equations (5) and (11) can be obtained using
the fact that on dimensional groundsZ

d!0!
�!;!0;  s� �!0�a 	 !aF �a;  s� ; (12)

where the function F only depends on the exponent a and
the coupling constant, and F �0;  s� 	 0 by definition.
The integral on the left-hand side is convergent as long
as �1< Re a < 1. The corresponding integral with

�!;!0;  s� replaced by 
�!0; !;  s�, which is relevant
to the evolution equation (11) for the kernel, is given by
F ��a;  s�. This follows from the fact that 
�!;!0;  s� 	
!�2 f�!0=!� on dimensional grounds. At one-loop order
we find from (10)

F �1��a� 	 
�1�
cusp � �1 � a� �  �1 � a� � 2�E� ; (13)

where  �z� is the logarithmic derivative of the Euler 

function.

Relation (12) implies that the ansatz

f�!;�;�0; (� 	
�
!
�0

�
(�g��;�0�

expU��;�0; (� ; (14)

with

g��;�0� 	
Z  s���

 s��0�
d 


cusp� �

+� �
;

U��;�0; (� 	 �
Z  s���

 s��0�

d 
+� �

�g��;� � � �� �

�F �(� g�� ;�0�;  �� ;

(15)

provides a solution to the evolution Eq. (5) with initial
condition f�!;�0; �0; (� 	 �!=�0�

( at some scale �0.
Here � is defined such that  s�� � 	  , the + function
is+� s� 	 d s=d ln�, and( can be an arbitrary complex
parameter. Note that g��;�0� > 0 if � > �0. Given the
exact expressions in (15) one can derive approximate
results for the functions g and U at a given order in
RG-improved perturbation theory. The explicit forms
arising at next-to-leading order can be found in [5].

We now assume that the function �B
��!;�0� is given at

some low scale �0 � few � �QCD and define its Fourier
transform with respect to ln�!=�0� through

�B
��!;�0� 	

1

2	

Z 1

�1
dt’0�t�

�
!
�0

�
it
; (16)
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where ’0�0� 	 1=/B is determined in terms of the first
inverse moment of the LCDA at the scale �0 [1]. It fol-
lows that the result for the LCDA at a different scale � is
given by

�B
��!;�� 	

1

2	

Z 1

�1
dt’0�t� f�!;�;�0; it� : (17)

It is instructive to work out the t and! dependences of the
integrand at leading order in RG-improved perturbation
theory. Using the one-loop result (13) we obtain

f�!;�;�0; it� /
�
!
�0

�
it�g
�1� it�g�
�1� it�


�1� it�g�
�1� it�
; (18)

where g 	 �2CF=+0� ln� s��0�= s���� is the leading-
order contribution to the function g��;�0�, and the for-
mula can be trusted only if g < 1 (which is justified for all
reasonable parameter values). The expression above is an
analytic function in the complex t plane with singularities
along the imaginary axis. For � > �0 the nearest singu-
larities are located at t 	 �i�1 � g� and t 	 i. The loca-
tions of the nearest singularities in the product
’0�t� f�!;�;�0; it� determine the asymptotic behavior
of the LCDA for !! 0 (lower half-plane) and !! 1
(upper half-plane). If we assume that the function
�B

��!;�0� at the low scale vanishes like !� for small !
and falls off like !�0 for large ! (exponential fall-off
would correspond to 0! 1), then the nearest poles in
’0�t� are located at t 	 �i� and t 	 i0, respectively. It
follows that after evolution effects

�B
��!;�� �

�
!min�1;��g�; for !! 0;
!�min�1;0��g; for !! 1:

(19)

Irrespective of the initial behavior of the LCDA, evolu-
tion effects drive it toward a linear growth at the origin
and generate a radiative tail that falls off slower than 1=!
even if the initial function has an arbitrarily rapid fall-
off. This implies that the normalization integral of
�B

��!;�� is UV divergent. The reason is that the func-
tion ~��B

���;�� in (2) has a logarithmic UV singularity as
�! 0, which is not subtracted in the renormalization of
the LCDA [2]. However, this fact is not an obstacle in
practice. Convolution integrals appearing in QCD factor-
ization theorems are always of the form (1), in which the
extra 1=! factor suppresses the contributions from large
! and renders the integral finite.

The solution of the evolution equation (11) for the hard-
scattering kernel proceeds in a similar way, except that in
the expression for the function f in (14) one must replace
�0 ! �i, g��;�0� ! �g��;�i�, and U��;�0; (� !
�U��;�i;�(�. As mentioned in the introduction, at
fixed order in perturbation theory and at an intermediate
scale �i �

����������
mb�

p
the kernel depends on ! only through

logarithms of the type ln�2E!=�2
i �, which are of the

order of 1 and so do not need to be resummed. We can
therefore write T�!;�i� � T �ln�2E!=�2

i �; . . .�, where
the dots represent other arguments independent of !.
102001-3
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FIG. 2. Results for the LCDA and the kernel (inset) for
different values of the renormalization scale such that  s 	 1
(solid), 0.5 (dashed), 0.3 (dash-dotted). We use /B 	 0:3 GeV
at � 	 �0.
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(Some of these arguments may contain large logarithms,
which must be resummed separately.) It follows that by
considering derivatives of the solution with respect to (
(evaluated at ( 	 0) we can satisfy arbitrary initial con-
ditions at the scale�i.We can then solve (11) and compute
the hard-scattering kernel at a scale �<�i. The exact
solution is given by

T�!;�� 	T �r(; . . .�

�
2E!

�2
i

�
(
�
!
�i

�
g��i;��

� exp��U��;�i;�(��








(	0
; (20)

where the notation T �r(; . . .� means that one must re-
place each logarithm of the ratio 2E!=�2

i in the initial
condition by a derivative with respect to the auxiliary
parameter (. It follows that the kernel scales like T �
!g��i;�� modulo logarithms.

From the explicit solutions given above it can be seen
that the convolution integral in (1) is indeed independent
of the renormalization scale. For this, it is necessary to
move the integration contour in (17) into the upper com-
plex t plane by an amount (� g��i;�0�. Note, however,
that the product T�!;���B

��!;�� for fixed ! is not scale
independent. We also stress that evolution effects mix
different (fractional) moments of the LCDA. For in-
stance, the first inverse moment at a scale �, which is
sometimes called 1=/B���, is related to a fractional in-
verse moment of order 1 � g��;�0� at a different scale
�0. As a result, the scale dependence of the parameter
/B��� is not calculable in perturbation theory.
Controlling it would require knowledge of the functional
form of the LCDA.

The technique developed here can be used for other
applications in B physics. For example, the evolution
equation studied in [6] for the hard-scattering kernel
relevant to the analysis of the photon energy spectrum
in inclusive B! Xs� decays has a solution analogous to
(20), and the corresponding evolution equation for the
shape function [7] can be solved as in (17).

To illustrate our results we consider a scenario
where the hard-scattering kernel at a high scale �i
with  s��i� 	 0:3 takes the simple form T�!;�i� 	 1,
and where the LCDA at a low hadronic scale �0

with  s��0� 	 1 assumes the form �B
��!;�0� 	

�!=/2
B�e

�!=/B inspired by QCD sum rules [2], for which

’0�t� 	
1

/B

�
�0

/B

�
it

�1 � it�: (21)

Figure 2 shows the results for the LCDA and the kernel at
three different values of the renormalization scale. For
simplicity the anomalous dimensions and + function are
evaluated at one-loop order. (A more detailed study of
resummation effects can be found in [5].) Whereas the
kernel exhibits a smooth powerlike behavior, the most
characteristic feature of the evolution of the LCDA is the
102001-4
development of a radiative tail for large values of !. In
this example the value of the convolution integral (1) is
about 25% smaller than the value 1=/B which one would
obtain without evolution effects.

4. Conclusions.—We have derived evolution equations
for the leading-order B-meson LCDA and for the hard-
scattering kernels entering the spectator term in QCD
factorization theorems for exclusive B decays into light
particles. Simple scaling relations are obtained for the
asymptotic behavior of these quantities, which are useful
for power counting of convolution integrals appearing in
the QCD factorization approach. Exact analytic solutions
to the evolution equations are given in terms of integrals
over anomalous dimension functions. This accomplishes
the resummation of large Sudakov double logarithms to
all orders in perturbation theory.
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