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We consider various equilibrium statistical mechanics models with combined short- and long-range
interactions and identify the crossover to mean-field behavior, finding anomalous scaling in the width of
the mean-field region, as well as in the mean-field amplitudes. We then show that this model enables us,
in many cases, to determine the universal critical properties of systems on a small-world network.

Finally, we consider nonequilibrium processes.
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The appropriate description for many complex real-
world systems is as a network [1], a general connection
of nodes and vertices which need not have the structure of
a regular lattice. The small-world network model com-
bines both long-range and short-range aspects, and inter-
polates between regular lattices and random graphs. This
model [2], in which a regular lattice is modified by either
randomly “‘re-wiring” links or else by simply randomly
adding long-range links, has become a standard model of
real-world networks. It incorporates some notion of local-
ity, as most of the links remain the same as that of the
original underlying lattice. Yet it also includes the *“‘small-
world effect” that the average path length between sites
on the network scales only as the logarithm of the net-
work size.

Studies of equilibrium statistical on small-world sys-
tems have shown rich behavior [3-6], with mean-field
critical exponents, contrasting with the behavior on scale-
free networks [7,8]. We seek to explain the mean-field
behavior in the small-world systems. However, the pres-
ence of quenched randomness makes the small-world
model difficult to treat analytically. We thus consider a
different model which is easier to handle, lacking
quenched randomness. In many cases, depending on in-
equality (11) below, this model gives the same universal
behavior as the small-world model, thus explaining the
critical phenomena in the small-world system. We show
the existence of mean-field behavior, albeit with anoma-
lous exponents describing the width of the critical region
and various mean-field amplitudes. These anomalous ex-
ponents can complicate the interpretation of numerical
data. Finally, we will consider a nonequilibrium case,
describing the relaxation to a stationary state via a
branching process.

To define our model, we again start with a regular
lattice of V sites in d dimensions. Rather than adding
long-range links with probability p, we give each site of
the lattice a weak coupling, of order p/V, to every other
site in the lattice [9]. We will refer to this as the long-
range model. We will find that many results can be ob-
tained on this system by combining mean-field with
standard renormalization group techniques. It is interest-
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ing to compare this model to a related mean-field solution
of path lengths on a small-world network [10].

In some cases, the long-range model may also be more
appropriate than the usual small-world model. In the
spread of a disease, for example, people tend to spread
the disease to those geographically nearby (the regular
lattice). There is a chance of a long-range spread of the
disease. However, this is not necessarily due to fixed long-
range links. Rather, it is due to the random probability
that a given person travels a long distance, typically by
air. Thus, a slight probability of long-range contact be-
tween any two people may be a better description than a
set of fixed long-range links.

Equilibrium statistics.—We consider equilibrium sta-
tistical mechanics models with uniform, ferromagnetic
couplings, such as Ising models, XY models, etc. ... Tbese
models can be represented by introducing a field ¢(x),
where x labels lattice sites and where ¢ hasn = 1,2,...
components, with a partition function

Z="> exp[-S[$]} )
(¢}
where § = E/kT is a statistical weight for a configuration

of energy E at temperature 7. .
For a model on a regular d-dimensional lattice, S[¢] =

Siocall @1, where Siocul &1 includes only short-range inter-
actions. We refer to this as the local system. We choose
instead for the long-range model a statistical weight with
additional long-range couplings of strength p/V:

SI¢] = Sical ] = 35 > blx) - bl @)

XX

We neglect the temperature dependence of the second
term on the right-hand side of Eq. (2) in what follows,
as it leads to corrections to physical quantities which are
higher order in p.

Now, decouple the long-range interaction to find

S Vh? S
Z = f d"h exp[ - }Z(h), 3)
n 2p
where # has n components and where
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Here, Z(h) is equal to the partition function of the local

system in the presence of a magnetic field, 4. Defining

h = |h|, then Z(h) = Z(h), as the value of the partition

function does not depend on the direction of A.

For p large, the long-range interaction outweighs the
short-range interaction, and the system can be approxi-
mately solved by mean-field theory. We will instead
consider precisely the opposite case: when p is small.
This is the only case in which we expect the dependence
of physical quantities, such as the specific heat, on p to be
universal. Then, the critical point of the long-range sys-
tem, T ., is close to the critical point of the local system,
T.. Thus, we can use scaling laws for the local system:
the magnetization, m, obeys m(T = T,, h) = A,,h'/?, de-
fining the critical exponent 6. For T > T,, the sus-
ceptibility x obeys x(T,h=0)=Ay|T — T,/ 7. In
general, we can write a scaling function: m =
RO F(T — T,)h='/®P). For h> (T — T.)%8, we use
the first result m(T = T,, h) = A,,h"/°, while for h <
(T —T.)%°, we use the second m(T=T,h)=
ARIT —T|™" — B h3|T — T,|7772°F, where we have
added the A* term in the expansion of m.

The magnetization is defined by d0InZ(h)/dh = mV.
Thus,

Z(h) = Z(0) exp[[oh dh’m(h’)V} 5)

We first consider the case of 7 near T, so that h >
(T — T,)°B. Then, the dominant contribution to Eq. (5)
arises from h’ > (T — T,)°F and thus Eq. (3) gives

R 2

z= Z(O)f d”hexp[— ‘;}; T+ ALVRYO (1 + 1/5)}.
Rn

(©)

Since V is taken large, we can use a saddle point to arrive
at h = (pA,,)%/®=Y or

m = A,(pA,)"/C Y. 7

The correlation length £ of the local system in the pres-
ence of this field is proportional to m~*/#, and hence
diverges as p — 0. The meaning of the correlation length
is not that spins beyond this length are uncorrelated.
Rather, it is that beyond this length the correlations in
the long-range system are controlled by the average field
m, while below this length, the short-range system con-
trols the correlations. Thus, the correlation function
(d(0) - d(x)) decays as a power law up to the correlation
length, and then asymptotes to a constant.

We have seen that at T = T, the system has a net
magnetization, and thus T, < T.. To study the transition
itself, we now consider the second case, h < (T — T,)%.
Now, Egs. (3) and (5) give
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> Vh?
Z = Z(0) d"hexp|:—2—+A;Vh2|T— T|7/2
p

R’I
_ 4 _ —y—=28
B, VH|T — T |7 B/4}.

®)

Again using a saddle point, we find a critical point at T
given by

T,—T. = (pA)', ©)

with m =0 for T > T,. Slightly below the critical

point we find h = \/Tc — T,/)/A;/BX(TC — TC)5B*1/2,
and a magnetization given by (using the scaling law

B-v=p
- AT
m =T, — TA: —yB X(F.— T2 (10)
X

Thus, the magnetization behaves as m = AT, — T,
with A o« pB=1/2/v If the local system is described by
mean-field theory, then B8 — 1/2 = 0. In other cases, 8 <
1/2, and the mean-field amplitude A diverges for small p.
The specific heat of the system can be obtained by dif-
ferentiating the partition function (8) twice with re-
spect to temperature. The partition function Z(0) is
analytic in T at T =T,, while the integral over &
is not, leading to a specific heat jump at T =T.
equal to (yALIT, — T.I77")?/(2B,|T, — T,|"7"2%6) o
|T, — T,.|*°A~7=2 = |T, — T.|~®. This jump in specific
heat is comparable to the specific heat of the local system
at temperature T .

We now consider the width of the mean-field criti-
cal region. For T <T,., the average magnetization of
the local system in the absence of a field behaves as
|T. — T|#, and the susceptibility is given by y =
Ay|T. — T|77. In the long-range system, this magnetiza-
tion produces a field & « p|T, — T|#, which in turns
feeds back and increases the magnetization an amount
of order p|T, — T|P|T. — T|~". For |T, — T|” > p, this
effect is negligible compared to the averaged field itself,
|T. — T|A. Thus, at such temperatures the long-range
interactions have a negligible effect on the magnetization,
and so the mean-field critical behavior extends only to
|T. — T| < p'/? o |T. — T,|. Therefore, for small p, the
width of the mean-field critical region is small. The
scaling arguments above all rely on this width becoming
narrower than the width of the anomalous critical region
in the local system, in which case both mean-field and
anomalous scaling will be seen in the same system.

Effect of randomness.—In the small-world model one
adds a quenched set of strong links, while the long-range
model lacks randomness and has links of strength p/V.
We now identify a criterion, Eq. (11), for when it is
justified to ignore the quenched nature of the links in
the small-world model, at least for determining the
universal scaling of quantities with p, as in Egs. (9) and
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(10). The strategy is to consider the long-range model
without randomness, and then to add the effects of ran-
domness in the small-world model as a perturbation,
determining when it is self-consistent to ignore random-
ness for small p.

At T, the correlation length of the local system is & «
(T. — T)~" = p~*/7. Thus, within a correlation volume,
there are p*”d/ ¥ sites. In the small-world model, each site
coupled with a long-range link feels an average field
proportional to m, and also feels statistical fluctuations
about this field. These effects lead to perturbations in the
two relevant variables, the magnetic field and tempera-
ture, which must be treated carefully.

Consider first the average field acting on a correlation
volume due to the long-range links. If sites in the corre-
lation volume are chosen instead with probability p to
have long-range links, then an average of p'~*¢/7 sites
are chosen. Since 1 — vd/7y < 0, this number diverges as
p — 0. Then, there are a large number of sites with long-
range links within each correlation volume and so the
sample-to-sample fluctuation in the number of such sites
within each correlation volume is negligible in the small-
world model. Thus, the sample-to-sample fluctuations in
the average field are negligible.

Next consider the statistical fluctuations in the field,
which reduce the correlation of the given site with its
neighbors. This effectively raises the temperature of a site
with a long-range link. Consider the number of sites with
long-range links. The root mean square sample-to-
sample fluctuation in the number of such sites scales as
(p&Y)'/2, and thus the sample-to-sample fluctuation in
the temperature averaged over a correlation volume
scales as (p/é:d)l/Z o p1/2+1/d/(2'y) o |TL _ Tcl'y/2+1/d/2.
Compare this to the difference in temperatures, T, — T..
As long as

v/2 + vd/2 > 1, (1)

the sample-to-sample fluctuation in temperature is negli-
gible as p — 0. Equation (11) resembles the Harris crite-
rion [11] for the relevance of disorder, with an additional
term /2 on the left-hand side. For any model where
Eq. (11) holds (this includes most unfrustrated models),
fluctuations in field and temperature are both negligible,
and the scaling of both 7. — T and A with p will be the
same in the small-world and long-range models.
Intuitively, we expect that the transition temperature in
the long-range model will be higher than that in the
small-world model: this is definitely true if we ignore
the local couplings, and consider only the long-range
links. Therefore, in cases when Eq. (11) does not hold,
T.— T. should scale as at least as large a power of p in
the small-world model as it does in the long-range model.
Variational approach.—We can also show that the
long-range model without randomness provides an upper
bound to the free energy of a small-world network model,
using an argument inspired by the Migdal-Kadanoff
bond-moving procedure [12]. Equation (2) defines the
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statistical weight S without randomness. If instead of
connecting every pair of sites with strength p/V, we
add connections between pairs of sites with probability
p/V and unit strength, we obtain a new statistical weight

S[d)] = Slocal[¢] - %le,xz d)(-xl) ) ¢(x2)’ where the sum
extends over sites x;, x, which are connected by a long-
range link. Then, (S—8)=> . . wlx;, x,)(¢(x;)" d(x2)),
where the brackets () denote an expectation value com-
puted in the long-range system with statistical weight
e S, and where w(x,, x,) = —p/(2V) if x;, x, are not
connected in the small-world network and w(xj, x;) =
1 — p/QV) if x, x, are connected. The partition func-
tion of a small-world network, Z,,,, can be expressed in
terms of that of the long-range system, Z, via Z;, =
Z{exp[S — §]). The convex inequality states that
(exp[S — S1) = exp[(S — §)]. The quantity (S — §) is a
random function of disorder. For a large system, this
quantity is self-averaging and its average over disorder
is equal to zero, so for typical networks, (S — §) = 0, up
to small fluctuations. Inserting this result in the convex
inequality gives Z,, = Z.

Comparison to numerics.—An important work was a
numerical calculation of some of these quantities, looking
for the shift in the transition temperature [6]. In that
paper, a different scaling argument was made for the
shift, T, — T. ~ p"/")_This is the temperature at which
a correlation volume includes roughly one long-range
link. However, we have argued that the shift in transition
temperature actually scales as p'/”, which is less than
p"/"d as p — 0. The difference arises since one long-
range link is not sufficient to magnetize an entire corre-
lation volume; several such links are required.

The numerical results in two dimensions are consistent
with a shift in transition temperature scaling as p'/? =
p%37-. The numerical results in three dimensions indicate
a shift scaling as p®°, while taking y = 1.2396 from €
expansion [13] gives 1/y = 0.81. This indicates some
discrepancy with the numerical results. However, in the
numerical study [6], it was argued that their results do not
yet involve sufficiently large lattices to obtain accurate

scaling; certainly, p%8! is closer to the observed scaling

than p!/0d ~ p053 i,

Nonequilibrium dynamics.—We now consider the gen-
eralization to a nonequilibrium process, the contact pro-
cess [14], in which each site is marked either infected or
susceptible. An infected site becomes susceptible at unit
rate, while an infected site can turn a neighboring sus-
ceptible site infected at a rate A/g, with g the lattice
coordination number. The state with all sites susceptible
is absorbing. However, above a critical A, if a single
infected site is placed in an infinite lattice of susceptible
sites, there is a nonzero probability of the epidemic per-
sisting for all time. We modify the model as follows: each
susceptible site can be infected by any other infected
site, not necessarily a neighbor, at a rate equal to p/V.
Although we will not decouple this interaction, the
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general development will be very similar to the equi-
librium case.

We start by recalling some exponents in the local case.
For A > A, there is an average density, p = |[A — A.|#. In
the presence of a source, where susceptible sites become
infected at a rate h, the density p(A = A, h) = A,h!/%.

Consider also the infection spreading from a single
source. At A = A, the survival probability of the in-
fection after time #, P(¢) obeys P(r) = Apt_5. The num-
ber of infected sites is a random variable, n(r); the
average number of such sites obeys 7(r) = A,1". The
radius of the infection scales as /2. For A < A, the in-
fection dies out exponentially, with an asymptotic sur-
vival probability P(r) = e~"/7, with 7o |A, — A|7"I.
This gives rise to a divergent susceptibility: in the pres-
ence of a source h, the susceptibility, y = d,p, obeys
XL h=0)=A]|A — A7,

Now, consider the dynamics in the long-range model,
with A = A_, with a single source for an infection. This
source grows as described, with the given P(z), ().
However, the local outbreak starting from that source
can produce other local outbreaks elsewhere, via the
long-range links, at a rate equal to p times the number
of infected sites. For p small, the number of infected
sites n(¢) will be large before such an event, and thus the
fluctuations in the n(z) are described by a random pro-
cess with a universal distribution. In the large V limit, at
fixed ¢, each new local outbreak produced via a long-
range link is well separated in space from the other local
outbreaks. Thus, we can describe the dynamics of the
spread from a single source simply: there is initially one
local outbreak, created at time O, which survives at time ¢
with probability P(z), and which produces additional local
outbreaks at a rate equal to pn(z). Each local outbreak,
created at time ¢, evolves independently, surviving with
probability P(¢+ — #'), and producing additional local out-
breaks with rate pn(r — t’). This fully describes the dy-
namics via a branching process. For A # A, this
description of the dynamics remains valid with a
changed P(r) and distribution of n(z).

At short times, the average number of infected sites in
this dynamics is equal to 72(¢). At long times, the average
number of infected sites grows exponentially [15]. To
describe this exponential growth, realize that at long
times the number of local outbreaks becomes large. If
s(t') describes the number of local outbreaks started at
time #, then the average number of particles at time ¢ is
equal to [ di's(')n(r — '), and thus on average s(t) =
p [ dt's(f')n(t — ¢'). The ansatz s(1) = e gives

a =[A,pl'(1 + n)]/0+, (12)

Each local outbreak takes a volume of order #9%/2.
Eventually, at sufficiently large time, such that e®’ ~
(V/1%/2), the individual local outbreaks start to merge,
and the dynamics of different local outbreaks become
coupled. This time ¢ is of order In(V).
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Beyond this time ¢, one approaches a stationary state
with density p. At A = A, the dynamics is equivalent
to the local system with a source of particles & = pp.
Thus, we find that the density obeys h = pAph'/‘sh, or
h = (pA,)%/® =Y and thus

p =A,(pA,)"/ D, (13)

Equation (13) should be compared to Eq. (7). It implies
that the transition to a spreading epidemic happens at A =
A, < A,. For A = A_, following the same steps as in the
equilibrium case leads to the same result as Eq. (10),
except that the mean-field transition has p = A — A,
rather than m o /T, — T. Thus, the stationary results in
this nonequilibrium model are described by the same
scaling theory as in the equilibrium models, while the
spread of infection starting from a single source is de-
scribed by an interesting branching dynamics.

We have developed a general scaling theory for de-
scribing equilibrium and nonequilibrium systems with
both short- and long-range interactions. We find that the
long-range interactions lead to mean-field behavior, but
with a scaling region whose width vanishes as p — 0. We
have also developed a branching process description of
the spread of infection from a single source in the contact
process with long-range interactions.
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