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We propose a method to prepare entangled states and implement quantum computation with atoms in
optical cavities. The internal states of the atoms are entangled by a measurement of the phase of light
transmitted through the cavity. By repeated measurements an entangled state is created with certainty,
and this entanglement can be used to implement gates on qubits which are stored in different internal
degrees of freedom of the atoms. This method, based on measurement induced dynamics, has a higher
fidelity than schemes making use of controlled unitary dynamics.
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FIG. 1. Energy levels of the atoms and experimental setup. (a)
The atoms have two ground states jgi and jfi, and the cavity
couples the state jfi to the excited state jei with coupling
strength g and detuning �. The excited state jei decays to an
auxiliary state joi with a decay rate 
. (b) Two atoms are
located inside a cavity and light is shone into the cavity in the
mode described by âain. After mixing with a local oscil-
lator (LO), the transmitted light is measured by homodyne
be prepared once again, and we can repeat the QND detection.
An essential ingredient in the construction of a quan-
tum computer is the ability to entangle the qubits in the
computer. In most proposals this entanglement is created
by a controlled interaction between the quantum systems
which store the quantum information [1]. An alternative
strategy employs a measurement which projects the sys-
tem into an entangled state [2,3] and, based on this
principle, a quantum computer using linear optics, single
photon sources, and single photon detectors has recently
been proposed [4]. Here we present a similar proposal
for measurement induced entanglement and quantum
computation on atoms in optical cavities, which uses
only coherent light sources and homodyne detection,
and we show that a high fidelity operation can be
achieved with weaker requirements for the cavity and
atomic parameters than in schemes which rely on a con-
trolled interaction.

Several schemes for measurement induced entangle-
ment have been proposed for atoms in optical cavities
[5–9], but compared to these schemes our proposal has
the advantage that entanglement can be produced with
certainty even in situations with finite detector efficiency.
Furthermore, our procedures are similar to methods al-
ready in use to monitor atoms in cavities [10], and we
therefore believe that the current proposal should be
simpler to implement. Indeed the atom counting proce-
dure in the experiment in Ref. [11] could be sufficient to
implement this scheme.

We consider atoms with two stable ground states jgi
and jfi and an excited state jei as shown in Fig. 1(a). Both
atoms are initially prepared in an equal superposition of
the two ground states, �jgi � jfi�=

���
2

p
. By performing a

quantum nondemolition (QND) measurement which
measures N, the number of atoms in state jfi, the state
vector is projected into the maximally entangled state
j�EPRi � �jgfi � jfgi�=

���
2

p
provided we get the outcome

N � 1. If the outcomes N � 0 or N � 2 are achieved, the
resulting state is jggi or jffi, so that the initial state can
0031-9007=03=91(9)=097905(4)$20.00 
measurement until the desired entangled state is pro-
duced. On average two measurements suffice to produce
the state. With M atoms in the cavity, the scheme can be
extended to the generation of multiparticle entangled
states where the population of the jfi state is distributed
symmetrically on all atoms. If, e.g., M � 3 we may
produce with certainty the W states [12] �jffgi �
jfgfi � jgffi�=

���
3

p
by performing the detection 4=3

times on average. Also, one could entangle a small subset
of the atoms by leaving all other atoms in jgi so that they
do not contribute to N.

The implementation of the QND detection is a modi-
fication of a scheme presented in Ref. [13] where QND
detection was achieved by measuring single photons re-
flected from a cavity. To generate entangled states with a
high fidelity this method is undesirable because it is very
sensitive to imperfections in the cavity and to imperfect
mode matching. Instead we propose to measure the light
transmitted through the cavity with homodyne detection.
The proposed experimental setup is shown in Fig. 1(b).
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The atoms are trapped inside the cavity, and we consider
a single field mode described by the annihilation operator
ĉc. Photons in the cavity can decay through two leaky
mirrors with decay rates 
a and 
b, and the incoming and
outgoing fields at the mirror with decay rate 
a (
b) are
described by âain and âaout (b̂bin and b̂bout). Light is shone into
the cavity in the âain mode, and the transmitted light in the
b̂bout mode is measured by balanced homodyne detection.
In the cavity the light couples the state jfi of the kth atom
to the excited state jei with a coupling constant gk. We
mainly consider light far from resonance with the atoms,
where the interaction changes the phase of the field by an
angle proportional to N. By measuring the phase of the
transmitted light with homodyne detection, we thus ob-
tain the desired QND detection of N. Spontaneous emis-
sion from the excited state limits the amount of light we
can send through the cavity, and below we evaluate the
fidelity F, obtainable for a given set of cavity parameters
(F � h�EPRj�j�EPRi, where � is the atomic density ma-
trix). The excited state jei decays with a rate 
, and for
simplicity we assume that the atoms end up in some other
state joi after the decay. Because these states have a
vanishing overlap with the desired state our results lead
to a lower fidelity than if we had assumed that the atoms
decay back to the state jfi, but it does not affect the
scaling with cavity parameters, which is our main inter-
est here.

The interaction of the cavity light with the atoms is
described by the Hamiltonian

H �
X
k

gkjeihfjkĉc� g	kĉc
yjfihejk � �jeihejk; (1)

where � is the detuning of the atoms from the cavity
resonance, and where the sum is over all atoms in the
cavity. The decay of the kth atom is described by a
Lindblad relaxation operator dk �

����



p
joihejk, and the in-

put/output relations are given by dĉc=dt � �i�ĉc;H
 �
�
=2�ĉc�

������

a

p
âain �

������

b

p
b̂bin �

�����

0

p
F̂F, âaout � âain �

������

a

p
ĉc,

and b̂bout � b̂bin �
������

b

p
ĉc, where 
 � 
a � 
b � 
0 is the

total decay rate, and 
0 and F̂F are the decay rate and
noise operator, respectively, associated with cavity loss to
other modes than the two modes considered. For conve-
nience ĉc has the standard normalization for a single mode
�ĉc; ĉcy
 � 1, whereas the normalization for the free fields
is such that, e.g., �âain�t�; âain�t0�y
 � ��t� t0�. We assume
that the atoms are separated by more than the resonant
optical wavelength, and we hence ignore the dipole-di-
pole interaction between the atoms. We solve the equa-
tions of motion by assuming that the fields are sufficiently
weak that only the lowest order terms in ĉc are important.
Note that this limits the total number of photon in the
cavity at any time, but the total number of photons in a
pulse may still be large. By taking the Fourier transform
we find the cavity field to be given by [13]

ĉc�!� �
������

a

p
âain�!�



2 � i!� g2N̂N


=2�i���!�

� noise; (2)
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where we have introduced the operator N̂N �P
kjfihfjk�t � 0� which counts the number of atoms in

state jfi before the pulse, and we have assumed that the
magnitude of all coupling constants is identical jgkj2 �
g2. Using Eq. (2) we find an expression for the trans-
mitted light

b̂b out�!� �
�

�����������

a
b

p



2 � i!� g2N̂N


=2�i���!�

âain�!� � noise: (3)

We determine the Heisenberg equations of motion for
the atoms from Eq. (1) and the relaxation operators and
solve them by assuming that the atomic ground state
operators vary only little on the time scale 1=
. Here
we shall need only the projection operator onto the jfi
state, which after the interaction with the light pulse �t �
1� is given by jfihfj�t � 1� � :jfihfj�t � 0� exp���̂��:,
where : : denotes normal ordering, and where we have
introduced the scattering probability operator

�̂� � 

Z
d!

g2


2

4 � ���!�2
ĉc�!�yĉc�!�: (4)

The incoming light is assumed to be in a coherent state
with frequency ! and since Eq. (3) is linear the outgoing
field will also be in a coherent state j�Ni. Using Eqs. (2)–
(4) we see that the difference between the coherent state
output of an empty cavity and that of a cavity with N
atoms can be expressed as

j�N � �0j
2 � N2 g2
b


�

2

4 �!2�
�N: (5)

The scattering probability per atom �N [obtained by
inserting Eq. (2) in Eq. (4)] depends on the number of
atoms, because the field amplitude inside the cavity de-
pends on N. From Eq. (5) we see that the best signal to
noise ratio (j�N � �0j

2=�N) is obtained by the use of light
which is resonant with the cavity, ! � 0. For resonant
light, the transmittance of the output mirror should match
all other losses 
b � 
a � 
0 � 
=2, and the QND de-
tection then depends only on the cavity parameters
through the combination g2=

. In particular, j�N �
�0j

2 � N2�Ng
2=

. If 
b deviates from 
=2 the effective

g2=

 is changed by 2
b=
. If transmitted photons are
lost, or if they are detected only with a probability �, the
effective g2=

 is reduced by this factor.

If we need to distinguish an empty cavity from a cavity
with a certain number of atoms, the signal to noise ratio is
independent of the detuning of the cavity from the atomic
resonance, but here we concentrate on the far detuned
case �� g2=
, 
, where the N � 1 and N � 2 compo-
nents are easier to distinguish. In this limit the intra-
cavity field and therefore the scattering probability �N are
independent of N and we replace �N by the same � for all
N. If the light is on resonance with the cavity ! � 0, and
far detuned from the atomic resonance, we see from
Eq. (3) that the interaction with the atoms changes the
phase of the field by an angle proportional to N. By
097905-2
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FIG. 2. Fidelity of the produced entangled state. Starting
from the bottom, the full curves show the obtainable error
probability 1 � F for Ps � 0:1%, 30%, and 50%. The dashed
curve is an upper bound on the total error probability when the
scheme is repeated until it is successful.

P H Y S I C A L R E V I E W L E T T E R S week ending
29 AUGUST 2003VOLUME 91, NUMBER 9
adjusting the phase of the local oscillator we can con-
figure the measurement so that the photocurrent differ-
ence, integrated over the duration of the pulse, can be
normalized to a dimensionless field quadrature operator x
which, in turn, is proportional to the phase change im-
posed by the atoms; hence, it provides a QND detection of
N. If the atoms are in the N � 0 state, light is transmitted
through the cavity without being affected by the atoms,
and the homodyne measurement provides a value for x in
accordance with a Gaussian probability distribution
p0�x� � exp��x2�=

����
�

p
with a variance ��x�2 � 1=2 due

to vacuum noise in the coherent state. If N � 1 or 2,
Eq. (5) predicts the Gaussian to be displaced so that it is
centered around xN � 2N

�����������������
�g2=



p
.

So far we have ignored the fact that the atoms are
slowly pumped out of the state jfi due to the decay of
the upper state, and this changes the distribution. If we
start with N atoms in state jfi, the probability distribu-
tion pN�x� can be written as a sum of a part pND;N�x�
where there has been no atomic decay and a part pD;N�x�
where at least one of the atoms has decayed: pN�x� �
pND;N�x� � pD;N�x�. With no decay Eq. (5) is valid and
we have pND;N�x� � exp��N��p0�x� xN�. If there is a
decay, Eq. (3) is valid until the time of the decay and we
find pD;1 �

R
�
0 d�

0 exp���0�p0�x� x1�
0=�� and pD;2 �

2
R
�
0 d�

0 exp��� � �0�p0�x � x1��
0 � ��=�
 �

R
�
0 d�

0 �R
�
0 d�

00 exp���0 � �00�p0�x � x1��0 � �00�=�
. If the ho-
modyne measurement produces an outcome ~xx in a region
xa < ~xx < xb around x1, the atoms are most likely in the
desired entangled state and the measurement is success-
ful. The probability for this outcome is Ps �R
xb
xa
d~xxPtot�~xx�, where the total probability distribution is

given by Ptot�~xx� � p0�~xx�=4 � p1�~xx�=2 � p2�~xx�=4.
The fidelity of the entangled state vanishes if one

of the atoms has decayed to a different subspace, and
the fidelity of the state produced is therefore given
by the conditional probability of starting in the state
with N � 1 and not having decayed. By averaging
over the interval of accepted values we get the fidelity,
F �

R
xb
xa
d~xxpND;1�~xx�=2=Ps.

For a given value of g2=

 the success probability and
fidelity depend on �, xa, and xb. To get a high fidelity one
must choose a small interval around x1 to minimize the
contribution from p0 and p2, but a small interval also
reduces the success probability. In Fig. 2 we show the
smallest error probability 1 � F achievable as a function
of g2=

, when we vary xa and � and adjust xb to retain a
fixed value of Ps. The full curves show 1 � F for Ps �
0:1%, Ps � 30%, and Ps � 50%.

In Fig. 2 we observe that the fidelity scales as

1 � F�




g2 log

�
g2





�
: (6)

This behavior can be understood from Eq. (5): with a
fixed distance j�1 � �0j �

���
2

p
x1, the error due to scatter-

ing decreases as 

=g2, but due to the overlap of the
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Gaussians there is a probability of accepting a wrong
value for N, which will dominate over the error due to
scattering if we keep the distance fixed and increase
g2=

. Because the overlap of the Gaussians decreases
exponentially with the square of the distance, optimum
fidelity is obtained if the distance grows logarithmically
with g2=

 and this gives the scaling in Eq. (6).

The scaling (6) is valid up to a success rate Ps � 50%,
where Ptot�~xx� consists of three well-separated Gaussians,
so that even when the scheme is not successful we know
in which state (N � 0 or N � 2) the atoms are left.
From these states we can deterministically produce the
initial product state, and we can repeat the measure-
ment procedure until it is successful. A lower limit on
the fidelity with this procedure can be shown to be
F >

R
xb
xa
d~xxpND;1�~xx�=2=�1 �

Rxa
�1 d~xxp0�~xx�=4 �

R
1
xb
d~xx �

pND;2�~xx�=4
. This lower limit is shown with a dashed
line in Fig. 2, and the scaling still follows (6).

The deterministic entanglement scheme can be used to
implement gates between qubits. Suppose that the levels
jfi and jgi are both degenerate with two substates. For
convenience the four states jg0i, jg1i, jf0i, and jf1i can be
described as tensor products of the ‘‘level’’ degree of
freedom (jgi and jfi) and ‘‘qubit’’ degree of freedom
(j0i and j1i). (This would be the natural representation
if j0i and j1i represent, e.g., a different motional state, but
they may also be different internal states in the atoms,
e.g., states with different magnetic quantum numbers.)
The qubits are initially stored in the states jg0i and
jg1i, and we assume that the interactions during the
entanglement preparation are symmetric with respect to
the qubit degrees of freedom, so that the qubits are
decoupled from the preparation of the entangled state of
the levels, i.e., we prepare the state j�qi � �jgfi �
jfgi�=

���
2

p
, where j�qi is the initial state of the qubits.

The entanglement in the levels jfi and jgi can now be
used to implement a CONTROL-NOToperation on the qubits
as discussed in Ref. [14]: we interchange states jf1i and
jg1i in the control atom and then measure if this atom is
097905-3
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in the jfi or the jgi level. If the measurement outcome is
jgi (jfi), the target atom is known to be in jgi (jfi) if the
control atom is in j1i, and the CONTROL-NOT operation
amounts to interchanging the states jg0i and jg1i (jf0i and
jf1i) in the target atom. To complete the gate a �=2 pulse
is applied between the levels jfi and jgi, and a QND
measurement of the level of the target atom, followed
by single atom transitions, conditioned on the outcome of
the measurement leaves the system in j ~��qi � jggi, where
j ~��qi is the desired outcome of the CONTROL-NOT opera-
tion on j�qi. The single atom measurements required for
the gate operation can be done by homodyne detection of
light transmitted through the cavity, and the procedure is
accomplished with a fidelity scaling as in Eq. (6).

A different strategy for quantum computation in opti-
cal cavities is to construct a controlled interaction be-
tween the atoms and the cavity field [15–17]: If an atom
emits a photon into the cavity mode this photon can be
absorbed by another atom, and this constitutes an inter-
action which can be used to engineer quantum gates. With
controlled interactions, a first estimate of the error proba-
bility $ in a single gate is given by $� maxf
; 
g=g, but
this can be improved by the use of Raman transitions or a
large detuning between the atoms and the cavity mode. If
the optical transition is replaced by a Raman transition
where a classical beam with Rabi frequency � and detun-
ing � induces a transition between two ground states and
the simultaneous creation/annihilation of a photon in the
cavity, the effective coupling constant is geff � g�=�
and the effective decay rate is 
eff � 
�2=�2. By de-
creasing �=� we can thus reduce the error probability

eff=geff due to spontaneous emission. Similarly it has
also been proposed to reduce the effect of cavity decay by
using transitions which are detuned from the cavity [17].
If the Raman transitions are detuned by an amount �
from the cavity mode the effective coupling constant
between the atoms is %� g2

eff=� and the leakage rate is

eff � 
g2

eff=�
2, so that the leakage can be reduced by

making �� 
. But, detuning from the cavity mode
increases the effect of spontaneous emission because the
gate takes longer time. Since the gate duration is t� 1=%
the probability for spontaneous emission is $
 � 
�=g2

and the probability for a cavity decay is $
 � 
=�. The
minimum error probability 1 � F � $
 � $
 is then
found to scale as

1 � F�

�������




g2

r
: (7)

Although Eq. (7) has been derived for a particular setup,
we believe the scaling in Eq. (7) is characteristic for all
existing proposals which use a controlled interaction
between the atoms. [Also the scheme in Ref. [18] has
the scaling (7) if the photodetectors have finite efficiency
or if the scheme is required to implement gates determin-
097905-4
istically.] The fundamental problem is that the atomic
decay and the cavity loss provide two sources of errors
which combine to give the scaling in Eq. (7). For a given
cavity, i.e., for given parameters g, 
, and 
, we obtain the
better scaling presented in Eq. (6) by using a scheme
where classical light is injected into the cavity and where
leakage of a single photon is not a critical event.

In conclusion, we have presented a scheme to entangle
atoms and implement gates between qubits which are
stored in the atoms. The error probability scales more
favorably than it does in schemes which use controlled
interactions and unitary dynamics, and the present
scheme is therefore advantageous if a high fidelity is
required. The best optical cavities currently reach
g2=

� 100 [10] so that Eq. (7) predicts F� 90% which
is less than the value in Fig. 2. More importantly, to
decrease the error rate in the measurement induced
scheme, e.g., by a given factor, we need only to improve
the cavity finesse, which is proportional to g2=

, by the
same factor. With the scaling in Eq. (7) the cavity finesse
should be increased by the same factor squared.
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