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Bipartite entanglement may be reduced if there are restrictions on allowed local operations. We
introduce the concept of a generalized superselection rule to describe such restrictions, and quantify the
entanglement constrained by it. We show that ensemble quantum information processing, where
elements in the ensemble are not individually addressable, is subject to the superselection rule
associated with the symmetric group (the group of permutations of elements). We prove that even
for an ensemble comprising many pairs of qubits, each pair described by a pure Bell state, the
entanglement per element constrained by this superselection rule goes to zero for a large number of

elements.
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Entanglement lies at the heart of quantum informa-
tion processing (QIP) [1], and quantifying entanglement
as a physical resource is a primary goal of this field [2].
Recently, it has been shown that the existence of super-
selection rules (SSRs) [3] requires us to reassess tradi-
tional entanglement measures [4] and the allowed
bipartite operations [5]: the SSRs enforce additional
restrictions on what Alice and Bob can accomplish
using only local operations and classical communica-
tion (LOCC).

In this Letter, we quantify entanglement constrained
by a generalized SSR and show that this entanglement is
typically less than the amount given by any standard
measure. To accomplish this task, we first introduce the
concept of a generalized SSR as a rule associated with
some group of physical transformations of a system. The
rule is defined operationally: it restricts the allowed op-
erations on the system to those that are covariant with
respect to that group. Our definition encompasses tradi-
tional SSRs such as charge and particle number as well as
effective SSRs for quantities such as angular momentum
or photon number (which may arise due to practical
restrictions on operations, the lack of an appropriate
shared reference frame, or through interaction with an
environment). Our measure of entanglement constrained
by SSRs is also operational in that it describes the acces-
sible entanglement that Alice and Bob can distill into
standard quantum registers through allowed LOCC.

As an explicit example of entanglement constrained by
a SSR, we describe ensemble QIP where access to indi-
vidual elements of the ensemble is not possible. The
relevant SSR here restricts the allowed operations to be
“collective” in that they act identically on all elements of
the ensemble. We find that our operational measure of
entanglement constrained by this SSR can be hugely
smaller than that found from standard entanglement mea-
sures. In particular, we prove the remarkable result that,
even if each element of the ensemble consists of two
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qubits described by a pure Bell state, the entanglement
per element constrained by this SSR is zero in the limit of
a large number of elements. We discuss how this result
places a powerful constraint on QIP in liquid-state NMR
[6] and spin-squeezing experiments [7].

We begin by providing an operational definition of a
SSR, and show that this definition is compatible with
colloquial uses. A SSR is a restriction on the allowed
local operations on a system, and is associated with a
group of physical transformations. This restriction could
be imposed by properties of the underlying theory (e.g., a
SSR for charge required in a Lorentz-invariant quantum
field theory [8]), but we also consider SSRs that arise due
to practical restrictions. Consider a local quantum system
with Hilbert space H. The set of physical operations on
this quantum system is given by the semigroup of com-
pletely positive (CP) trace-preserving maps {E}cp. These
CP maps describe not only unitary (closed) operations but
also open processes such as state preparation, dissipation,
and measurement. Let G be a group of physical trans-
formations acting on H through a unitary representation
T. We define an operation @ € {E}¢p to be G covariant if

O[T(g)pT ()] = T(g)O[pIT(g), (1)

for all group elements ¢ € G and all density operators p.
We then define the SSR associated with G, or G-SSR, to be
to be a restriction on the allowed operations on the system
to those CP maps {O};_ssg C {E}cp that are G covariant.
The following examples reveal how this definition is
compatible with some traditional SSRs:

Example 1: charge.—Let G be a one-dimensional Lie
group U(1) generated by a Hermitian operator Q, i.e.,
T(¢) = exp(iéQ). If Q is a local charge operator then
this U(1)-SSR is usually referred to as a SSR for charge.
Similar SSRs can be developed for particle number.
When such a SSR applies, one cannot, for instance, lo-
cally create superpositions of charge eigenstates because
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the required operations are not G covariant. Note that this
SSR does not forbid the creation of superpositions where,
for example, one charge can be found at two different
locations, as in the twin-slit experiment for electrons.

Example 2: angular momentum.—Let G = SO(3) be
the rotation group generated by the total angular momen-
tum operators {L, , .}. The associated SSR ensures that all
allowed operations are rotationally invariant. This SSR
may apply, for instance, when there is no reference frame
for orientation and thus all observables commute with the
total angular momentum. A reference frame would estab-
lish operators that specify a direction; such operators do
not commute with total angular momentum and thus
violate the SSR. In this example, the SSR is a practical
rather than fundamental consideration: the lack of a
reference frame leads to a SSR.

Example 3: environmentally induced SSR.—Let H,,, be
a coupling Hamiltonian between the system and an envi-
ronment, and let G = U(1) be the group generated by this
Hamiltonian. Einselection [9], which is often expressed
as the condition that the only allowed states of the system
are those that commute with this Hamiltonian, has the
form of a U(1)-SSR.

It should be noted that the existence of a SSR is not
equivalent to a conservation law; in fact, the only inter-
esting SSRs are those that apply to nonconserved quan-
tities [10]. Also note that a SSR does not restrict the
allowed states of the system. However, the restrictions
imposed on the allowed operations by the G-SSR mean
that a state p is indistinguishable from the states
T(g)pTT(g) for all ¢ € G. Because of this indistin-
guishability, it is operationally appropriate to describe p
by the state

(dimG)~' ¥ T(g)pT(g),
Glel= $€G

[cdv(g) T(g)pT (g),

finite groups,

Lie groups,
2)

where dv is the group invariant (Haar) measure [11]. The
state G[p] is invariant under the action of G,

T(g)GlpITT(g) = Glp]

so we call this state the G-invariant state.

Consider a SSR for charge as an example. States that
are superpositions of charge eigenstates are not a priori
prohibited. For a state that is a superposition of charge

eigenstates |¢) = alq,) + Blg,), with Olg;) = qilg;), the
effect of the superoperator G on this state is

Gl = lal*lgXa:| + |BI*lg2)qal. 4

Thus, in the presence of the SSR, a superposition of
charge eigenstates is operationally equivalent to a mix-
ture of charge eigenstates. The effect of G is to project
onto eigenspaces of the group generator Q. SSRs associ-
ated with one-dimensional Lie groups are often defined
this way (cf. [5]). However, for general SSRs (including
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the example associated with the rotation group), there is
not necessarily an equivalent expression.

We now consider imposing a SSR in a bipartite setting;
that is, both parties (Alice and Bob) are restricted to local
operations obeying Eq. (1). Consider a bipartite state p®
shared by Alice and Bob. This state may have been
prepared by a third party under conditions where no
SSR applies. The G-invariant state constrained by these
local SSRs is G[p?’] = G* ® G*’[p?’]. To quantify the
entanglement of this state we assume that, in addition to
this bipartite system, Alice and Bob each possess a quan-
tum register with Hilbert space dimension equal to or
greater than that of their respective systems. These regis-
ters are initially in the pure product state 3” and are not
subject to any SSR. (For example, these registers could be
standard qubits over which Alice and Bob have complete
control.) We quantify the entanglement E_gsr(p*?) con-
strained by the G-SSR as the maximum amount of en-
tanglement that Alice and Bob can produce between their
registers by LOCC [4]. The latter can be quantified by an
appropriate standard measure E, e.g., the entanglement of
distillation [1]. The following theorem quantifies the en-
tanglement constrained by an arbitrary SSR for pure or
mixed states, generalizing the result of [4]:

Theorem: The entanglement E;_gsg(p??) that Alice
and Bob can produce between their registers from the
state p* by LOCC constrained by a G-SSR is given by
the entanglement E(G[p“®]) that they can produce from
the state G[p’] by unconstrained LOCC, where E is a
standard measure of entanglement.

Proof: First, note that any CP map can be composed
with G to yield a G-invariant operation, i.e.,

G o €0 G E{O}gssr VE € {Ecp, (5)

which follows from the definitions (1) and (2). Let O be a
G-invariant operation in LOCC acting on the initial state
p® ® 0P The final state of the registers is given by
04 = Try, (O p** ® 03"]), where the trace is over the
shared system. The maximum entanglement produced
between the registers is given by maximizing E(0¢)
over all LOCC obeying the G-SSR. Thus, using (5),

Eg-ssr(p®?) = mgolXE(Trsys(@[pab ® 0§"])
= m(zole(Trsys((g o 0o G)[p ® i)
mé,lXE(Trsys((g o &0 G)p* ® gf’])

maxE(Tr,, (E[Glp™ @ 0§’D), (6

where the second line follows from the properties of trace
and the definition (2), and the last line follows from the
properties of trace. The latter maximization is over all
LOCC (not just operations in {O};_gsr), and gives the
entanglement E(G[p“]) that Alice and Bob can produce
between their registers from the state G[p®®] by uncon-
strained LOCC. O
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We now turn to a specific application of the above result
that yields a striking difference between the amount of
entanglement with and without the SSR. Ensemble QIP
describes N identical copies of a system of qubits, where
N is usually taken to be very large. We consider a situation
where access to individual elements of the ensemble is not
possible, and thus only collective transformations and
measurements (i.e., operations which affect each element
identically) are allowed. In the following, we formulate
this restriction as a SSR, and show that it severely limits
the entanglement in the system.

Consider an ensemble consisting of N copies of a single
qubit. (For convenience, we assume N is even.) The
Hilbert space H$V carries a collective tensor representa-
tion R of SU(2), by which a rotation ) € SU(2) acts
identically on each of the N qubits. The Hilbert space also
carries a representation P of the symmetric group Sy,
which is the group of permutations of the N qubits. The
action of these two groups commute, and Schur-Weyl
duality [11] states that the Hilbert space H$" carries a
multiplicity-free direct sum of SU(2) X Sy irreducible
representations (irreps), each of which can be labeled by
the SU(2) total angular momentum quantum number j.
Each of these irreps can be factored into a tensor product
H;z ® H;p, such that SU(2) acts irreducibly on H;z and
trivially on H;p, and Sy acts irreducibly on H;» and
trivially on H . Thus,

N/2

=0
The dimension of H is 2j + 1, and that of H;p is [12]
2j+1

w_( N
g <N/2 —j)N/z S ESE ®

Consider a basis |j, m)z ® |j, r)p for H;z ® H;p, with
{lj, m)g, m = —j, ..., j} the standard angular momentum
basis for Hg and {|j, r)p, r = 1,..., CE»N)} a basis for H .
The group SU(2) X Sy acts on this basis as R(Q)|j, m)r ®
P(p)|j, r)p for Q@ = SU(2) and p € Sy.

In ensemble QIP without individual addressability, the
only allowed operations O are those that are invariant
under permutations of elements and thus must satisfy

O[P(p)pPt(p)] = P(p)O[pIPt(p), )

for all p € Sy. (Note that these allowed operations in-
clude all transformations generated by Hamiltonians in
the enveloping algebra of su(2), i.e., which are polyno-
mials in J, Jy, and J,. In liquid-NMR QIP the operations
are more restricted because there are no controllable
intermolecular interactions. We will not consider that
additional restriction here.) Thus, ensemble QIP with
this restriction must respect the SSR associated with
the symmetric group Sy. Unlike previous examples in-
volving Lie groups, this SSR is associated with a finite
group. We define the superoperator
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Plp]l = % > P(p)oPt(p), (10)

" pESy

which can be extended to act on states of n qubits on N
elements. The action of P is best seen in the decomposi-
tion of Eq. (7): it completely mixes states in H;p while
leaving states in H ;z invariant. The spaces H z are called
noiseless subsystems (NSs) [13], and are free from the
decohering effect of P. These NSs are dual to the collec-
tive NSs H ;p» which have been explored in the context of
quantum computation [13,14] and quantum communica-
tion without shared orientation reference frames [12] and
which are free from collective SU(2) decoherence.

We now quantify bipartite entanglement in ensemble
QIP constrained by the Sy-SSR; specifically, we show
that the standard (unconstrained) measure of entangle-
ment can grossly overestimate the amount of entangle-
ment accessible to Alice and Bob. Consider the following
example, where each of N elements possesses two qubits,
a and b. These qubits are separated such that all the qubits
of type a are given to Alice and b to Bob. If the Sy-SSR is
enforced, Alice and Bob are both restricted to local
Sy-covariant operations, and any state p?’ is indistin-
guishable from the state P[p®] = P¢ ® P’[p*].

If the two qubits on every element are described by the
Bell state |®*) = (1/v2)(luu)® + |dd)*), the state of
the total ensemble is |®N)) = |OT)®N A naive quantifi-
cation of entanglement of this pure state gives N ebits.
However, the constrained entanglement is much less.
Expressing this state in terms of the decomposition of
Eq. (7) yields

| N2
o) = — |j, mY&lj, rYslj, myalj. r)%
NP AP IP3
) (N)

N/2
(2J S P IV (11)

-2

where

J
> limglimb  (12)

1
Nab —
9 = T 2

1 . .
|)(j @b = WZIL ”>%|J, V>1bo, (13)
C: r
J

are (normalized) maximally entangled states in Hf
HP, and H4, ® H’,, respectively.
The actlon of fP on the state (11) is

N/2(2

PLOWNOM]] = Y

j=0

+1 (V)
B 1 g @ ot
(14)

where a* is the (normalized) completely mixed state on
Hfp ® I]-I] . The resulting state is an incoherent sum of
max1mally entangled states on each irrep HY, ® I]-I] .The
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entanglement of this state can be easily calculated be-
cause both Alice and Bob can locally perform a mea-
surement of total J2, which determines j and yields a pure
state in Hf, ® IH]fR. Thus, the entanglement of this state
constrained by the Sy-SSR is

N2©2j+ 1)WY
ESN—SSR(|‘D(N)><CD(N)|) = ZTJ
j=0

10g2(2] + 1))

5)

which, for large N, behaves as %logzN . Thus, although the
state |®™)) possesses N ebits of unconstrained entangle-
ment, its entanglement constrained by the SSR is only
%logzN ebits (asymptotically). This result is remarkable:
for a pure state of the ensemble, each element consisting
of two qubits in a Bell state, the constrained entangle-
ment per element rapidly approaches zero for large N.

Note that the state |V )), describing each element as a
Bell state, is not a maximally entangled state under the
Sy-SSR  constraint; we now identify such a state.
Observing the form of the decohering mechanism 2,
this state is clearly a pure maximally entangled state in
the NS Hf, ® I]-I]]b.R with the largest dimension, given by
Jo = N/2. The entanglement per element of this state is
N~ 'log,(N + 1), which approaches zero for large N. As
this state is the maximally entangled state under the SSR
constraint, we have proved that the maximum entangle-
ment per element in the large N limit is zero.

A remarkable duality is evident between the SSR asso-
ciated with the symmetric group and that associated with
the rotation group when one considers the maximum
entanglement these SSRs allow. The latter describes a
situation where Alice and Bob do not share an orientation
reference frame for their qubits [12]. In the Hilbert space
decomposition of Eq. (7), the SSR for the rotation group is
described by a decohering superoperator on the SU(2)
irreps, as opposed to the Sy irreps described above. As
proved in [12], the maximum entanglement between N
pairs of qubits constrained by the SU(2)-SSR behaves
asymptotically as N — log,N; in this Letter, we proved
that the maximum entanglement between N pairs of
qubits constrained by the Sy-SSR behaves asymptotically
as log, N. Note that these two values asymptotically sum
to N, which is the maximum unconstrained entanglement
for N qubit pairs.

In summary, we have defined generalized SSRs, and
quantified the constrained entanglement of a bipartite
state as the amount of entanglement that can be distilled
into quantum registers using only LOCC that obey the
appropriate SSR. Our example of ensemble QIP reveals
that systems with apparently large amounts of entangle-
ment can in fact possess very little under the appropriate
SSR constraint. We note that this result for ensemble QIP
applies to liquid-state NMR [6], where qubits are realized
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as nuclear spins on a molecule and a sample generally
contains N ~ 10%° molecules [15]. Our operational defi-
nition of entanglement constrained by a S)-SSR is also
applicable to spin-squeezed atomic gases [7]; because the
NS corresponding to j, = N/2 is used in such experi-
ments, our result shows that the present measures of
entanglement used for this system [16] are appropriate.

Another question related to our operational definition
of entanglement is the following: What constraints does a
SSR impose on the entangled states that can be created
(formed) from a set amount of entanglement in the quan-
tum registers? As pointed out in [5], it is not even possible
to create certain separable states in the presence of a SSR.
It is clear that SSRs place severe contraints on QIP, and
our operational definitions of SSRs and entanglement
constrained by them provide a new understanding and a
valuable tool to quantum information science.
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