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Tomographic Quantum Cryptography: Equivalence of Quantum and Classical Key Distillation
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The security of a cryptographic key that is generated by communication through a noisy quantum
channel relies on the ability to distill a shorter secure key sequence from a longer insecure one. For an
important class of protocols, which exploit tomographically complete measurements on entangled pairs
of any dimension, we show that the noise threshold for classical advantage distillation is identical with
the threshold for quantum entanglement distillation. As a consequence, the two distillation procedures
are equivalent: neither offers a security advantage over the other.
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for the generation of a key in an alphabet with n letters. ponents of j�i. The n-dimensional first component is
The ability to generate a secure cryptographic key,
although the communication employs a quantum channel
with a high level of noise, is crucial for all practical
implementations of quantum cryptography. To be on the
safe side, one must assume that all noise results from
eavesdropping, that eavesdropper Eve has full knowledge
of the cryptographic protocol (the ‘‘Kerckhoff principle’’
of cryptology), and that she acquires as much knowledge
about the communication as is allowed by the laws of
physics. This leads immediately to the question of where
is the noise threshold below which a secure key can be
generated at all. We give a definite answer for an impor-
tant class of protocols, restricting, however, the discus-
sion to incoherent attacks of the eavesdropper.

In the cryptographic protocol that we consider [1],
Alice and Bob exploit entangled pairs of qunits, that is,
n-fold quantum alternatives, the case of n � 2 being the
elementary binary alternative of a qubit. Alice measures
on her qunit, and Bob on his, an observable randomly
chosen from their respective sets of n� 1 observables
that are tomographically complete. Such sets surely exist
for any dimension [2]. Adopting the notation of [3], we
write jmki for the kth eigenket of Alice’s mth observable
and jmki for the kth eigenket of Bob’s mth observable,
whereby m � 0; 1; . . . ; n and k � 0; 1; . . . ; n� 1.

It is possible and expedient to choose these kets such
that h0jjmki � hmkj0ji for all m; j; k, and then the maxi-
mally entangled 2-qunit state j i that Alice and Bob wish
to share,

j i �
1���
n

p
Xn�1

k�0

j0k0ki � � � � �
1���
n

p
Xn�1

k�0

jnknki; (1)

has the same appearance irrespective of the pair of ob-
servables that is used to define it. Therefore, their mea-
surement results in the matched bases (same value of m
for her and him) are perfectly correlated and can be used
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On average, the measurement bases will be matched for
a fraction 1=	n� 1
 of the qunit pairs, and these data will
supply the raw key sequence. Alice and Bob use part of it
together with all the other measurement data, acquired
for mismatched bases, to perform quantum tomography
on the 2-qunit state they are actually receiving from the
source. The tomographic completeness of the two sets of
observables is crucial for this part of the procedure.

Alice and Bob assume that Eve distributes the qunits.
They accept the raw key only if the result of their state
tomography is consistent with an admixture of the cha-
otic state to j ih j, thereby forcing Eve to use a symmet-
ric strategy. In other words, they accept only a 2-qunit
state � of the form

��		0�	1
j ih j�
	1

n
I; 	0�	n�1
	1�1; (2)

where I is the 2-qunit identity operator, 	0 is the proba-
bility that Bob gets the same value as Alice when the
bases match, and 	1 is the probability that he gets a
particular other one. Since 	0 � 	1 � 1=n when there
are no correlations whatsoever between their measure-
ment results, we take 	0 > 1=n > 	1 for granted.

Although Eve fully controls the 2-qunit source, she is
not free in her actions, because the state received by Alice
and Bob must be of the form (2). One finds [1] that,
therefore, the best Eve can do is to prepare an entangled
pure state of the form

j�i �

������
	0

n

r Xn�1

k�0

j0k0kijEkki �

������
	1

n

r X
k�l

j0k0lijEkli; (3)

where her normalized ancilla states jEkli are such that
those with k � l are orthogonal to all others, whereas
those with k � l are not orthogonal among them
selves, but obey hEkkjElli � 1� 		1=	0
	1� �kl
. Thus
the summations in (3) constitute two orthogonal com-
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relevant for establishing the cryptographic key, and the
n	n� 1
-dimensional second component is just noise to
Alice and Bob.

We note that the invariance of j i under base permu-
tations is also possessed by j�i. Rather than referring to
the 0th pair of observables, we could just as well use the
joint eigenkets jmkmli of any other pair in conjunction
with a suitable unitary redefinition of the ancilla states.

After Alice and Bob have given public notice of
the observables they measured for each qunit pair, it is
Eve’s task to infer their measurement results — their nit
values — whenever the bases match. To this end she must
be able to identify her ancilla states. (Remember that we
are only considering incoherent eavesdropping attacks.)
Owing to the structure of j�i she can distinguish unam-
biguously all the states belonging to the second orthogo-
nal component, and so she can correctly infer Alice’s and
Bob’s nit values if they are different. But if they are the
same, Eve has to distinguish the jEkki of the first compo-
nent, and then she cannot avoid errors because these states
are not orthogonal to each other. In this situation, she
minimizes her error probability by performing the so-
called square-root measurement [4].

We denote by�0 and �1 � 	1� �0
=	n� 1
 the proba-
bilities that Eve infers the nit value correctly or gets a
particular wrong one, respectively, provided that Bob’s
nit value is the same as Alice’s. They are related to Bob’s
probabilities 	0 and 	1 of (2) by

������
�0

p
�

������
�1

p
�

��������������
	1=	0

p
: (4)

Note that this expresses a certain complementarity be-
tween Bob’s and Eve’s respective knowledge about Alice’s
nit values. If Bob’s values agree perfectly with Alice’s
(	0 � 1, 	1 � 0), then Eve’s values are completely ran-
dom (�0 � �1 � 1=n), and conversely �0 � 1, �1 � 0
implies 	0 � 	1 � 1=n. In the more interesting inter-
mediate situations we have �0 > 1=n > �1.

For single-particle protocols with qubits (n � 2) or
qutrits (n � 3), the relation (4) is well established [5,6],
and has been conjectured to hold for arbitrary dimensions
[5,7]. This conjecture is proved in [1].

According to the Csiszár–Körner (CK) theorem [8], a
secure key sequence can be extracted from the raw key
sequence if the mutual information between Alice and
Bob exceeds the mutual information between either one
of them and Eve. This requires that Bob’s and Eve’s
probabilities are such that

� � 	0logn	0 � 	1� 	0
logn	1

� 	0��0logn�0 � 	1� �0
logn�1


> 0; (5)

and then � is the yield of the CK procedure, the fraction
of nit values that make it from the raw key sequence to
the secure one. Since (4) implies that �0; �1 ! 1=n as
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	0 ! 1, this condition is surely met if 	0 is sufficiently
large. If, however, there is too much noise in the 2-qunit
state (2), the CK theorem is not immediately applicable.
Rather, Alice and Bob must select a subsequence of nit
values in a systematic way such that the CK theorem
applies to the resulting ‘‘distilled key.’’

One method at their disposal for this purpose is en-
tanglement distillation (ED), a quantum procedure by
which they produce a smaller number of qunit pairs
with stronger entanglement, by means of local operations
and classical communication. (In the context of quantum
cryptography, ED was originally proposed for qubits
under the name of quantum privacy amplification [9].)
By means of ED, Alice and Bob can reach a 	0 value for
which the CK theorem is applicable, before they measure
their respective observables. For states of the particularly
simple structure (2), ED will be successful if

	0 > 2	1 (6)

and only then [10]. If Eve can perfectly compensate for
the back effect of ED on the ancillas, relation (4) also
applies after ED. If she cannot, it turns into an inequality,
tersely, � ! < .

Alternatively, Alice and Bob can produce their raw
key sequences without any subensemble selection, and
then perform advantage distillation (AD), a procedure of
classical (i.e., nonquantum) cryptography [11]. As we
shall see below, for 	0; �0 values that obey (4), AD is
successful whenever (6) holds, and only then, so that the
thresholds for ED and AD are the same [12]. As a con-
sequence of this coincidence, ED and AD are equivalent
in the sense that neither offers a security advantage over
the other.

Both ED and AD require classical two-way communi-
cation, but once the CK theorem becomes applicable, one-
way communication suffices. We leave it as a moot point
which method makes better use of the resources because
the standard versions of both are very wasteful and
hardly suited for practical implementation [13].

The AD protocol is as follows. Alice and Bob divide
their raw strings of nit values into blocks of length L. For
each block, Alice casts an n-sided die and then adds,
modulo n, the random value thus found to the given block.
Then she sends these modified blocks to Bob through a
public, but authenticated, channel. Bob subtracts, modulo
n, his corresponding blocks. Whenever he obtains a block
consisting of L identical nit values, he enters this value
into his distilled sequence. If, however, different values
appear in a block, he disregards it. He tells Alice, through
the public channel, which blocks contribute to the dis-
tilled key and which do not. She in turn then forms her
own distilled sequence from the random values that she
added to the blocks that Bob did not discard.

The two distilled sequences are identical, except at the
rare positions, where Bob’s whole block consisted of L
097901-2
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wrong nit values of the same kind. Since there are n� 1
different wrong nit values, the relative frequency with
which a particular one occurs in the distilled sequence is

BL �
	L1

	L0 � 	n� 1
	L1
; (7)

which is, so to say, the new value of 	1 after AD. Since
	1 <	0, BL decreases exponentially with the block
length L,

lim
L!1

BL�1

BL
�
	1

	0
: (8)

Whenever Alice and Bob end up with a pair of different
nit values after AD, Eve knows both values correctly,
because she knows the values for each nit pair of the two
blocks in question. But when Alice and Bob get the same
value, which is the much more frequent situation for long
blocks, Eve cannot be completely sure about any nit value
in the blocks. Her best strategy is then to subtract Alice’s
block from her corresponding block, that is, to do what
Bob does. Typically, Eve’s block is inhomogeneous after
the subtraction, and it is highly likely that the correct nit
value is the value that occurs more often than any other.
So, she decides by a majority vote which nit value to
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assign: She bets on the value that appears most frequently
in the block, and if there are several most frequent values,
she picks one of them at random.

To find her probability for assigning the right value, we
first note that a block with m correct values and
k1; k2; . . . ; kn�1 ones of the n� 1 wrong kinds, respec-
tively, occurs with a relative frequency that is given by

L!�m0 �
L�m
1

m! k1! � � � kn�1!
�L�m;k1�k2�����kn�1

�

�
L
m

�
�m0

�
@
@x

�
L�m Yn�1

j�1

	�1x
kj

kj!

�������x�0
; (9)

where the Kronecker delta symbol enforces the constraint
L�m � k1 � k2 � � � � � kn�1.

Second, we note that Eve surely assigns a wrong value
whenever m<maxfk1; . . . ; kn�1g, and in the situation of
m � maxfk1; . . . ; kn�1g she assigns the right value with
probability 1=	l� 1
 where l is the count of kj’s that are
equal to m. With the combinatorial factor�

n� 1

l

�
�

�
n

l� 1

�
l� 1

n
(10)

taken into account, the summation over m and all kj thus
gives
1� 	n� 1
EL �
XL
m�0

�
L
m

�
�m0

�
@
@x

�
L�m1

n

Xn�1

l�0

�
n

l� 1

�	
	�1x


m

m!



l
	Xm�1

k�0

	�1x

k

k!



n�1�l

jx�0

(11)
for the probability that Eve assigns the right nit value to a
string of length L, and EL is then the probability that she
gets a particular one of the n� 1 wrong values. Parroting
the remark after (7), we note that EL is, so to say, the new
value of �1 after AD.

We use the generating function

E	t
 �
X1
L�0

tL

L!
EL (12)

to deal with these probabilities as a set. It is given by

E	t
 �
et

n� 1

X1
m�0

	�0t

m

m!
e��0t

�

�
1�

�wm	�1t


n � �wm�1	�1t



n

n�wm	�1t
 � wm�1	�1t



�
;

(13)where

wm	x
 �
Xm
k�0

xk

k!
e�x (14)

is the partially summed Poisson distribution.
For the comparison with (8), the quantity of primary

interest is the limit

lim
L!1

EL�1

EL
� lim

t!1

@
@t

lnE	t
; (15)

which directs our attention to the large-t behavior of E	t
.
Now, for large t the Poisson distribution in m, by which
the parenthesized difference is weighted in (13), has its
peak atm ’ �0t > �1t, and the relative width of this peak
shrinks with growing t. Accordingly, all relevant contri-
butions to the sum in (13) have m > �1t, so that the
approximation

wm	�1t
 � wm�1	�1t
 �
	�1t


m

m!
e��1t ’ 1 (16)

is permissible, and

E	t
 ’ 1
2e

	1��0��1
tI0	2
�����������
�0�1

p
t
 for t� 1 (17)

obtains. Since there is no difference between the modified
Bessel function I0	z
 and its derivative I1	z
 when z� 1,
this tells us that

lim
L!1

EL�1

EL
� 1� 	

������
�0

p
�

������
�1

p

2: (18)

In conjunction with (8), it follows that AD of this kind
will be successful if

	1

	0
< 1� 	

������
�0

p
�

������
�1

p

2 (19)

holds because then Bob’s error probability gets exponen-
tially smaller than Eve’s with increasing block length L,
and the distilled key sequence will meet the requirements
of the CK theorem if L is chosen large enough. Now, if (4)
097901-3



FIG. 1. The threefold coincidence, for n�5, in a plot of Bob’s
probability 	0 vs Eve’s probability �0. The relevant values of
	0 > 1=n and �0 > 1=n are outside the gray area. The dash-
dotted curve a identifies the 	0; �0 pairs for which (4) holds. To
the right of the dashed vertical line b, condition (6) is obeyed
and ED is possible. By contrast, AD can be successfully
performed below the solid-line curve c which marks the border
stated in (19). All three lines intersect at 	0 � 1=3 � 0:33,
�0 � 	11� 4

���
6

p

=25 � 0:83, so that the part of curve a that is

to the right of curve b is also the part that is below curve c.—
The CK theorem is applicable to 	0; �0 values below the dotted
curve d that results from (5). It intersects curve a at 	0 � 0:708,
�0 � 0:470. From there, a single ED step takes one to the �
point on curve a, whereas AD with L � 2 moves one horizon-
tally to the � point further right (see [13]).
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relates Eve’s probabilities to Bob’s, as it is the case for the
probabilities originating in Eve’s source state (3), the
threshold condition (19) for classical AD is, indeed,
identical with the threshold condition (6) for quantum
ED, as we have asserted above. This remarkable coinci-
dence is illustrated in Fig. 1.

It is important to note that, despite its simplicity and its
lack of efficiency, the AD scheme considered correctly
identifies the threshold point on curve a in Fig. 1. For, if
		0; �0
 is to the left of the triple-coincidence point, the
2-qunit state (2) is separable. Eve can then blend it from
product states and can so ensure that there is no useful
mutual information between Alice and Bob, and without
it they cannot generate a secure key.

For n � 3, a more involved argument about the same
matter is given in [7]. In fact, while our paper was being
written, we became aware of [7] where some of our
results are conjectured and identical conclusions are
reached. One wonders, of course, whether the surprising
equivalence between classical and quantum distillation is
more than just the coincidence as it appears here and in
[7]. Perhaps it hints at a deeper connection between these
fundamentally different procedures.
097901-4
Finally, one might wonder if Eve has a better procedure
at her disposal than the square-root measurement that is
the basis of our analysis. For the following reasons we
think she does not. The error-minimizing strategy takes
full advantage of the built-in symmetry of the tomo-
graphic protocol. For all other fully symmetric eaves-
dropping attacks, the CK region is reached at smaller
	0 values, and successful AD is possible for all of them
if the ED threshold (6) is crossed [14]. It seems, therefore,
rather reasonable that the error-minimizing strategy is
Eve’s optimal choice.
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